论文标题
量子液滴的研究:一种分析方法
Investigation of Quantum Droplet: An Analytical Approach
论文作者
论文摘要
对偶极和二元玻色菌凝结(BEC)中液滴的最新观察激励了我们详细研究液滴形成的理论。确切地说,我们有兴趣研究准二维几何形状中液滴形成的可能性。最近的观察结果得出的结论是,由于有效的平均场与均值场相互作用之间的竞争,液滴稳定了。因此,可以将有效运动方程映射到立方四分之一的非线性schrödinger方程(CQNLSE)。我们获得了修改的Gross-Pitaevskii方程或CQNLSE的两个分析解,并通过数值验证它们。基于它们的稳定性,我们研究了可以形成液滴的参数制度。有效的潜力使我们得出结论孤子统治区域和自结界液滴形成区域。
Recent observations of droplets in dipolar and binary Bose-Einstein condensate (BEC) motivates us to study the theory of droplet formation in detail. Precisely, we are interested in investigating the possibility of droplet formation in a quasi-one-dimensional geometry. The recent observations have concluded that the droplets are stabilized by the competition between effective mean-field and beyond mean-field interaction. Hence, it is possible to map the effective equation of motion to a cubic-quartic nonlinear Schrödinger equation (CQNLSE). We obtain two analytical solutions of the modified Gross-Pitaevskii equation or CQNLSE and verified them numerically. Based on their stability we investigate the parameter regime for which droplets can form. The effective potential allows us to conclude about the regions of soliton domination and self-bound droplet formations.