论文标题
词典产品图中的双统治
Double domination in lexicographic product graphs
论文作者
论文摘要
在图表$ g $中,顶点占主导地位,及其邻居。子集$ s \ subseteq v(g)$据说是$ g $的双重支配集,如果$ s $至少将$ g $的每个顶点占据至少两次。 $ g $的所有双重主导组中的最小基数是双统治号码。在本文中,对于因子图$ g $和$ h $的不变式而言,我们获得了词典产品图的双统治数量$ g \ circh h $的双统治数量的紧密界限和封闭公式。
In a graph $G$, a vertex dominates itself and its neighbours. A subset $S\subseteq V(G)$ is said to be a double dominating set of $G$ if $S$ dominates every vertex of $G$ at least twice. The minimum cardinality among all double dominating sets of $G$ is the double domination number. In this article, we obtain tight bounds and closed formulas for the double domination number of lexicographic product graphs $G\circ H$ in terms of invariants of the factor graphs $G$ and $H$.