论文标题

畅通无阻的曲面

Well-Poised Hypersurfaces

论文作者

Cecil, Joseph, Dutta, Neelav, Manon, Christopher, Riley, Benjamin, Vichitbandha, Angela

论文摘要

如果从热带品种$ trop(i)$中获得的所有初始理想是PREME的,则理想的$ i $是“实力良好的”。这种情况首先由内森·伊尔滕(Nathan Ilten)和第三作者定义。我们在代数封闭的场上对所有固定的超曲面进行了分类。我们还研究了这些超曲面的热带品种和相关的牛顿 - 科恩科夫体。

An ideal $I$ is said to be "well-poised" if all of the initial ideals obtained from points in the tropical variety $Trop(I)$ are prime. This condition was first defined by Nathan Ilten and the third author. We classify all well-poised hypersurfaces over an algebraically closed field. We also study the tropical varieties and associated Newton-Okounkov bodies of these hypersurfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源