论文标题

使用面对面晶圆粘结技术对3D堆叠高性能商业微处理器的热分析

Thermal Analysis of a 3D Stacked High-Performance Commercial Microprocessor using Face-to-Face Wafer Bonding Technology

论文作者

Mathur, Rahul, Chao, Chien-Ju, Liu, Rossana, Tadepalli, Nikhil, Chandupatla, Pranavi, Hung, Shawn, Xu, Xiaoqing, Sinha, Saurabh, Kulkarni, Jaydeep

论文摘要

3D集成技术正在半导体行业看到广泛采用,以抵消二维规模的局限性和放缓。高密度3D集成技术,例如与低于10 $μ$ m的面对面晶圆键合,可以使用所有3个维度来设计新的SOC,例如在多个3D层上折叠微处理器设计。但是,由于功率密度的总体增加,重叠的热热点可能是一个挑战。在这项工作中,我们对7NM工艺技术的最先进,高性能,阶段性微处理器进行了详尽的热模拟研究。微处理器的物理设计被分区和实现,并在2层,3D堆叠的配置中进行逻辑块和内存实例(logic-over-over-memory 3D)。通过在相同的7NM工艺技术上制造的高性能,基于CPU的2D SOC芯片,对热模拟模型进行校准以从高性能的2D SOC芯片中进行校准。在各种工作量条件下进行了不同的3D配置的热轮廓,并进行了比较。我们发现,在3D中堆叠微处理器的设计而不考虑热含义,可能会导致最高的死亡温度高达12°C,而在最差的功率指示工作负载下,其2D对应物高于其2D对应物。这种温度的升高将减少在需要限制之前可以运行强力工作量的时间。但是,逻辑上的内存分区3D CPU实现可以降低该温度的升高,这使得3D设计的温度仅比2D基线高6 $^\ circ $ c。我们得出的结论是,使用热意识设计分配和改进的冷却技术可以克服与3D堆叠相关的热挑战。

3D integration technologies are seeing widespread adoption in the semiconductor industry to offset the limitations and slowdown of two-dimensional scaling. High-density 3D integration techniques such as face-to-face wafer bonding with sub-10 $μ$m pitch can enable new ways of designing SoCs using all 3 dimensions, like folding a microprocessor design across multiple 3D tiers. However, overlapping thermal hotspots can be a challenge in such 3D stacked designs due to a general increase in power density. In this work, we perform a thorough thermal simulation study on sign-off quality physical design implementation of a state-of-the-art, high-performance, out-of-order microprocessor on a 7nm process technology. The physical design of the microprocessor is partitioned and implemented in a 2-tier, 3D stacked configuration with logic blocks and memory instances in separate tiers (logic-over-memory 3D). The thermal simulation model was calibrated to temperature measurement data from a high-performance, CPU-based 2D SoC chip fabricated on the same 7nm process technology. Thermal profiles of different 3D configurations under various workload conditions are simulated and compared. We find that stacking microprocessor designs in 3D without considering thermal implications can result in maximum die temperature up to 12°C higher than their 2D counterparts under the worst-case power-indicative workload. This increase in temperature would reduce the amount of time for which a power-intensive workload can be run before throttling is required. However, logic-over-memory partitioned 3D CPU implementation can mitigate this temperature increase by half, which makes the temperature of the 3D design only 6$^\circ$C higher than the 2D baseline. We conclude that using thermal aware design partitioning and improved cooling techniques can overcome the thermal challenges associated with 3D stacking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源