论文标题
使用条件标准化流程的模仿计划
Imitative Planning using Conditional Normalizing Flow
论文作者
论文摘要
在动态城市场景中计划轨迹的一种流行方式是自动驾驶汽车的动态城市场景,是依靠明确指定和手工制作的成本功能,再加上轨迹空间中的随机抽样,以找到最小的成本轨迹。这样的方法需要大量的样本才能找到低成本轨迹,并且在计划时间预算的情况下,可能会出现高度次优的轨迹。我们探讨了归一化流的应用,以改善自动驾驶汽车轨迹计划的性能(AVS)。我们的主要见解是在类似专家的轨迹的低维潜在空间中学习采样策略,其中选择了最好的样本进行执行。通过将轨迹规划师的成本歧管作为能量函数进行建模,我们会从AV控制空间上的玻尔兹曼分布之前从玻尔兹曼分布之前学习一个场景。最后,我们证明了通过IL和手工构造的轨迹采样技术对现实世界数据集的有效性。
A popular way to plan trajectories in dynamic urban scenarios for Autonomous Vehicles is to rely on explicitly specified and hand crafted cost functions, coupled with random sampling in the trajectory space to find the minimum cost trajectory. Such methods require a high number of samples to find a low-cost trajectory and might end up with a highly suboptimal trajectory given the planning time budget. We explore the application of normalizing flows for improving the performance of trajectory planning for autonomous vehicles (AVs). Our key insight is to learn a sampling policy in a low-dimensional latent space of expert-like trajectories, out of which the best sample is selected for execution. By modeling the trajectory planner's cost manifold as an energy function, we learn a scene conditioned mapping from the prior to a Boltzmann distribution over the AV control space. Finally, we demonstrate the effectiveness of our approach on real-world datasets over IL and hand-constructed trajectory sampling techniques.