论文标题

互惠推荐系统:最先进的文献分析,社会建议的挑战和机遇

Reciprocal Recommender Systems: Analysis of State-of-Art Literature, Challenges and Opportunities towards Social Recommendation

论文作者

Palomares, Ivan, Porcel, Carlos, Pizzato, Luiz, Guy, Ido, Herrera-Viedma, Enrique

论文摘要

在Internet中,信息超负荷存在决策的情况,人们有大量可用选项可供选择,例如在电子商务网站或在大城市访问的餐厅购买的产品。推荐系统作为数据驱动的个性化决策支持工具出现,以协助用户在这些情况下:他们能够根据用户的偏好,需求和/或行为处理与用户相关的数据,过滤和推荐项目。与大多数传统的推荐方法不同,在最终用户对收到的建议的反应中,在对用户最终的反应中,在互惠推荐系统(RRS)用户中,成功的项目是对其他用户推荐的项目。因此,最终用户和建议的用户都应接受“匹配”建议,以获得成功的RRS性能。 RR的操作不仅需要像经典推荐人一样预测用户交互数据的准确偏好估计,而且还可以通过在单方面用户对用户偏好信息上应用融合过程来计算(对)用户之间的相互兼容性。本文介绍了现有文献的快照式分析,该分析总结了迄今为止最先进的RRS研究,重点介绍了RR的算法,融合过程和基本特征,既源自传统的用户到项目,以及这种新兴的方法家族的固有模型。代表性的RRS模型同样突出显示。此后,我们讨论了对RRSS的未来研究的挑战和机会,特别关注(i)融合策略,以说明互惠性和(ii)与社会建议相关的新兴应用领域。

There exist situations of decision-making under information overload in the Internet, where people have an overwhelming number of available options to choose from, e.g. products to buy in an e-commerce site, or restaurants to visit in a large city. Recommender systems arose as a data-driven personalized decision support tool to assist users in these situations: they are able to process user-related data, filtering and recommending items based on the users preferences, needs and/or behaviour. Unlike most conventional recommender approaches where items are inanimate entities recommended to the users and success is solely determined upon the end users reaction to the recommendation(s) received, in a Reciprocal Recommender System (RRS) users become the item being recommended to other users. Hence, both the end user and the user being recommended should accept the 'matching' recommendation to yield a successful RRS performance. The operation of an RRS entails not only predicting accurate preference estimates upon user interaction data as classical recommenders do, but also calculating mutual compatibility between (pairs of) users, typically by applying fusion processes on unilateral user-to-user preference information. This paper presents a snapshot-style analysis of the extant literature that summarizes the state-of-the-art RRS research to date, focusing on the algorithms, fusion processes and fundamental characteristics of RRS, both inherited from conventional user-to-item recommendation models and those inherent to this emerging family of approaches. Representative RRS models are likewise highlighted. Following this, we discuss the challenges and opportunities for future research on RRSs, with special focus on (i) fusion strategies to account for reciprocity and (ii) emerging application domains related to social recommendation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源