论文标题
机器学习的图形信号处理:审查和新观点
Graph signal processing for machine learning: A review and new perspectives
论文作者
论文摘要
大型结构化数据的有效表示,处理,分析和可视化,尤其是与复杂领域(例如网络和图形)相关的数据,是现代机器学习中的关键问题之一。图形信号处理(GSP)是信号处理模型和算法的充满活力的分支,旨在处理图形支持的数据,开辟了新的研究路径以应对这一挑战。在本文中,我们回顾了GSP概念和工具(例如图形过滤器和转换)对新型机器学习算法的开发做出的一些重要贡献。特别是,我们的讨论集中在以下三个方面:利用数据结构和关系先验,提高数据和计算效率,并增强模型的解释性。此外,我们还提供有关GSP技术未来开发的新观点,这些观点可能是一方面应用数学和信号处理之间的桥梁,另一方面是机器学习和网络科学。这些不同学科的交叉利用可能有助于释放现代复杂数据分析的众多挑战。
The effective representation, processing, analysis, and visualization of large-scale structured data, especially those related to complex domains such as networks and graphs, are one of the key questions in modern machine learning. Graph signal processing (GSP), a vibrant branch of signal processing models and algorithms that aims at handling data supported on graphs, opens new paths of research to address this challenge. In this article, we review a few important contributions made by GSP concepts and tools, such as graph filters and transforms, to the development of novel machine learning algorithms. In particular, our discussion focuses on the following three aspects: exploiting data structure and relational priors, improving data and computational efficiency, and enhancing model interpretability. Furthermore, we provide new perspectives on future development of GSP techniques that may serve as a bridge between applied mathematics and signal processing on one side, and machine learning and network science on the other. Cross-fertilization across these different disciplines may help unlock the numerous challenges of complex data analysis in the modern age.