论文标题

Node2Coords:与Wasserstein Barycenters学习的图表表示

node2coords: Graph Representation Learning with Wasserstein Barycenters

论文作者

Simou, Effrosyni, Thanou, Dorina, Frossard, Pascal

论文摘要

为了执行网络分析任务,需要在图结构中捕获最相关信息的表示。但是,现有方法不学习可以直接解释的表示形式,并且对图形结构的扰动是可靠的。在这项工作中,我们通过提出Node2Coords来解决这两个局限性,该限制是图形的表示算法,该算法同时学习了该空间中节点的低维空间并坐标。跨越低维空间的模式揭示了图最重要的结构信息。节点的坐标揭示了其局部结构与图形结构模式的接近度。为了通过考虑基础图来衡量这种接近度,我们建议使用Wasserstein距离。我们介绍了一个自动编码器,该自动编码器在编码器中采用线性层,并在解码器上使用了新颖的瓦斯汀barycentric层。捕获节点局部结构的节点连接性描述符通过编码器,以学习一组图形结构模式。在解码器中,节点连接描述符被重建,以及图形结构模式的Wasserstein Barycenters。节点连接性描述符的Barycenter表示的最佳权重对应于该节点在低维空间中的坐标。实验结果表明,使用节点2坐标学到的表示形式可解释,导致节点嵌入,这些嵌入在图形结构的扰动中稳定,并且与节点分类中的最新方法相比,与图形结构的扰动稳定并获得了竞争性或优越的结果。

In order to perform network analysis tasks, representations that capture the most relevant information in the graph structure are needed. However, existing methods do not learn representations that can be interpreted in a straightforward way and that are robust to perturbations to the graph structure. In this work, we address these two limitations by proposing node2coords, a representation learning algorithm for graphs, which learns simultaneously a low-dimensional space and coordinates for the nodes in that space. The patterns that span the low dimensional space reveal the graph's most important structural information. The coordinates of the nodes reveal the proximity of their local structure to the graph structural patterns. In order to measure this proximity by taking into account the underlying graph, we propose to use Wasserstein distances. We introduce an autoencoder that employs a linear layer in the encoder and a novel Wasserstein barycentric layer at the decoder. Node connectivity descriptors, that capture the local structure of the nodes, are passed through the encoder to learn the small set of graph structural patterns. In the decoder, the node connectivity descriptors are reconstructed as Wasserstein barycenters of the graph structural patterns. The optimal weights for the barycenter representation of a node's connectivity descriptor correspond to the coordinates of that node in the low-dimensional space. Experimental results demonstrate that the representations learned with node2coords are interpretable, lead to node embeddings that are stable to perturbations of the graph structure and achieve competitive or superior results compared to state-of-the-art methods in node classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源