论文标题
连续时间贝叶斯网络中结构学习和参数估计的功能模型:识别多种慢性条件模式的应用
A Functional Model for Structure Learning and Parameter Estimation in Continuous Time Bayesian Network: An Application in Identifying Patterns of Multiple Chronic Conditions
论文作者
论文摘要
贝叶斯网络是强大的统计模型,可以研究与疾病建模和预测中主要应用的随机变量之间的概率关系。在这里,我们提出了一个连续的时间贝叶斯网络,该网络具有条件依赖性(表示为泊松回归),以模拟外源变量对网络条件依赖性的影响。我们还提出了一种自适应正则化方法,具有基于密度聚类的直观早期停止功能,以有效学习所提出的网络的结构和参数。使用从退伍军人事务部电子健康记录中提取的多种慢性病患者的数据集,我们将拟议方法的性能与文献中的一些现有方法进行了比较,以短期(提前一年)和长期(多年)预测。提出的方法提供了多种慢性条件之间复杂功能关系的稀疏直观表示。鉴于先前的任何情况,它还提供了随着时间的流逝分析多种疾病轨迹的能力。
Bayesian networks are powerful statistical models to study the probabilistic relationships among set random variables with major applications in disease modeling and prediction. Here, we propose a continuous time Bayesian network with conditional dependencies, represented as Poisson regression, to model the impact of exogenous variables on the conditional dependencies of the network. We also propose an adaptive regularization method with an intuitive early stopping feature based on density based clustering for efficient learning of the structure and parameters of the proposed network. Using a dataset of patients with multiple chronic conditions extracted from electronic health records of the Department of Veterans Affairs we compare the performance of the proposed approach with some of the existing methods in the literature for both short-term (one-year ahead) and long-term (multi-year ahead) predictions. The proposed approach provides a sparse intuitive representation of the complex functional relationships between multiple chronic conditions. It also provides the capability of analyzing multiple disease trajectories over time given any combination of prior conditions.