论文标题

使用时间多路复用的单光子源的子射击传输测量方案

Scheme for sub-shot-noise transmission measurement using a time multiplexed single-photon source

论文作者

Magnoni, Agustina G., Knoll, Laura T., Larotonda, Miguel A.

论文摘要

光学量子计量学的一个有希望的结果是能够在传播或吸收测量中实现子射击性能。这是由于量子束相对于其经典对应物的光强度的不确定性明显降低。在这项工作中,我们模拟了一个实验的结果,该实验使用了基于对的多形单光子源,该实验通过连续的自发参数降低转换(SPDC),然后使用几种类型的实验性损失,然后使用二进制时间分裂策略进行时间多重分配策略。对于此类来源,输出信号的次波多音统计是实现子射击性能的关键。我们将数值结果与两个范式限制进行比较:射击界限(使用相干源实现)和量子限制(以理想的光子数量fock状态作为输入源获得)。我们还研究了可以使用阈值检测器的条件,以及输入光波动对测量误差的影响。结果表明,即使不使用数字分辨探测器,也可以实现子射击性能,而改进因子的范围为1.5到2。该技术将允许使用超低光强度和最小生物学或其他脆弱标本的超低光强度和最小的损坏样品的光学吸收来测量样品的光学吸收。

A promising result from optical quantum metrology is the ability to achieve sub-shot-noise performance in transmission or absorption measurements. This is due to the significantly lower uncertainty in light intensity of quantum beams with respect to their classical counterparts. In this work, we simulate the outcome of an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion (SPDC) followed by a time multiplexing set-up with a binary temporal division strategy, considering several types of experimental losses. With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance. We compare the numerical results with two paradigmatic limits: the shot-noise limit (achieved using coherent sources) and the quantum limit (obtained with an ideal photon-number Fock state as the input source). We also investigate conditions in which threshold detectors can be used, and the effect of input light fluctuations on the measurement error. Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors, with improvement factors that range from 1.5 to 2. This technique would allow measurements of optical absorption of a sample with reasonable uncertainty using ultra-low light intensity and minimum disruption of biological or other fragile specimens.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源