论文标题

团队:我们需要更强大的DNN的对抗性示例

TEAM: We Need More Powerful Adversarial Examples for DNNs

论文作者

Qian, Yaguan, Zhang, Ximin, Wang, Bin, Li, Wei, Gu, Zhaoquan, Wang, Haijiang, Swaileh, Wassim

论文摘要

尽管深层神经网络(DNNS)在许多应用领域都取得了成功,但它仍然容易受到不可察觉的对抗示例的影响,这可能会导致DNN的错误分类。为了克服这一挑战,提出了许多防御方法。确实,一个有力的对抗例子是衡量这些防御机制的关键基准。在本文中,我们提出了一种新颖的方法(团队,基于泰勒的基于泰勒扩展的对抗方法),以产生比以前的方法更强大的对抗示例。主要的想法是通过最大程度地减少在不受限制的攻击下地面真相阶级的信心或最大化目标阶级在目标攻击下的信心,来制作对抗性实例。具体而言,我们定义了新的目标函数,该函数通过在输入的微小邻居中使用二阶泰勒扩展来近似DNN。然后,使用Lagrangian乘数方法来获得这些目标函数的优化扰动。为了减少计算量,我们进一步介绍了高斯 - 纽顿(GN)方法以加快速度。最后,实验结果表明,我们的方法可以可靠地产生具有100%攻击成功率(ASR)的对抗性示例,而仅通过较小的扰动。此外,使用我们的方法生成的对抗性示例可以根据梯度掩盖打败防御性蒸馏。

Although deep neural networks (DNNs) have achieved success in many application fields, it is still vulnerable to imperceptible adversarial examples that can lead to misclassification of DNNs easily. To overcome this challenge, many defensive methods are proposed. Indeed, a powerful adversarial example is a key benchmark to measure these defensive mechanisms. In this paper, we propose a novel method (TEAM, Taylor Expansion-Based Adversarial Methods) to generate more powerful adversarial examples than previous methods. The main idea is to craft adversarial examples by minimizing the confidence of the ground-truth class under untargeted attacks or maximizing the confidence of the target class under targeted attacks. Specifically, we define the new objective functions that approximate DNNs by using the second-order Taylor expansion within a tiny neighborhood of the input. Then the Lagrangian multiplier method is used to obtain the optimize perturbations for these objective functions. To decrease the amount of computation, we further introduce the Gauss-Newton (GN) method to speed it up. Finally, the experimental result shows that our method can reliably produce adversarial examples with 100% attack success rate (ASR) while only by smaller perturbations. In addition, the adversarial example generated with our method can defeat defensive distillation based on gradient masking.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源