论文标题

Laser2VEC:基于相似性的机器人感知数据的检索

Laser2Vec: Similarity-based Retrieval for Robotic Perception Data

论文作者

Nashed, Samer B.

论文摘要

随着移动机器人功能的提高和部署时间的增加,分析数据量不断增长的工具已变得必要。对于寻求发现机器人系统中系统性故障的从业者来说,当前的最新记录,播放和勘探系统不足。本文介绍了一套基于相似性的机器人感知数据查询的算法,并实现了一种廉价地存储许多部署的2D激光雷达数据的系统,并评估了有效或部分扫描的Top-K查询。我们通过卷积变化自动编码器生成激光扫描的压缩表示,并将它们存储在数据库中,在该数据库中,在查询时运行用于距离函数的轻量级密集网络。我们的查询评估器利用嵌入式空间的局部连续性来生成评估订单,以期预期,该订单主导了数据库的完整线性扫描。我们系统的准确性,鲁棒性,可扩展性和效率在从数十个部署和通过破坏真实数据产生的合成数据收集的现实数据中进行了测试。我们发现我们的系统准确有效地识别了在机器人遇到相同位置或相似室内结构或对象的许多情节中的类似扫描。

As mobile robot capabilities improve and deployment times increase, tools to analyze the growing volume of data are becoming necessary. Current state-of-the-art logging, playback, and exploration systems are insufficient for practitioners seeking to discover systemic points of failure in robotic systems. This paper presents a suite of algorithms for similarity-based queries of robotic perception data and implements a system for storing 2D LiDAR data from many deployments cheaply and evaluating top-k queries for complete or partial scans efficiently. We generate compressed representations of laser scans via a convolutional variational autoencoder and store them in a database, where a light-weight dense network for distance function approximation is run at query time. Our query evaluator leverages the local continuity of the embedding space to generate evaluation orders that, in expectation, dominate full linear scans of the database. The accuracy, robustness, scalability, and efficiency of our system is tested on real-world data gathered from dozens of deployments and synthetic data generated by corrupting real data. We find our system accurately and efficiently identifies similar scans across a number of episodes where the robot encountered the same location, or similar indoor structures or objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源