论文标题

旋转的熵动力学

The Entropic Dynamics of Spin

论文作者

Caticha, Ariel, Carrara, Nicholas

论文摘要

在熵动力学(ED)中,量子理论的本质在于其概率性质,而希尔伯特(Hilbert)空间结构起着次要的,最终是可选的作用。概率分布的动力学是由熵对带有相关物理信息的约束的最大化驱动的 - 方向性,相关性,量规交互等。挑战是确定这些约束并建立对约束本身如何更新的标准。在本文中,ED框架扩展了以描述自旋1/2点粒子。在ED中,旋转既不被建模为旋转体,也不是通过点粒子的运动。它是波函数的认知特性。反映自旋的特殊旋转特性的约束最有效地用几何代数语言表达。所有约束的更新以强调对称原则的核心重要性的方式进行。首先,我们在概率的相空间,它们的共轭力和自旋变量的相位空间中确定适当的符号和度量结构。这种结构产生了fubini-study指标的自旋1/2粒子的推导,该指标突出了其与信息几何形状的深度联系。然后,我们构建一个ED,该ED既保留了象征结构(哈密顿流)和公制结构(杀伤流)。我们表明,通用的哈密顿式杀伤流在波函数中是线性的。进一步强调,哈密顿量是及时的熵进化的产生者,导致了保利方程描述的熵动力学。最后,我们讨论了对形式主义的新解释,该解释产生的物理图片与其他解释所提供的形式明显不同。

In the Entropic Dynamics (ED) approach the essence of quantum theory lies in its probabilistic nature while the Hilbert space structure plays a secondary and ultimately optional role. The dynamics of probability distributions is driven by the maximization of an entropy subject to constraints that carry the relevant physical information -- directionality, correlations, gauge interactions, etc. The challenge is to identify those constraints and to establish a criterion for how the constraints themselves are updated. In this paper the ED framework is extended to describe a spin-1/2 point particle. In ED spin is neither modelled as a rotating body, nor through the motion of a point particle; it is an epistemic property of the wave function. The constraint that reflects the peculiar rotational properties of spin is most effectively expressed in the language of geometric algebra. The updating of all constraints is carried out in a way that stresses the central importance of symmetry principles. First we identify the appropriate symplectic and metric structures in the phase space of probabilities, their conjugate momenta, and the spin variables. This construction yields a derivation of the Fubini-Study metric for a spin-1/2 particle which highlights its deep connection to information geometry. Then we construct an ED that preserves both the symplectic structure (a Hamiltonian flow) and the metric structure (a Killing flow). We show that generic Hamiltonian-Killing flows are linear in the wave function. Imposing further that the Hamiltonian be the generator of an entropic evolution in time leads to an entropic dynamics described by the Pauli equation. We conclude with a discussion of the new interpretation of the formalism which yields a physical picture that is significantly different from that provided by other interpretations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源