论文标题

模型驱动的重建,具有相位的高度采样MRI

Model-driven reconstruction with phase-constrained highly-oversampled MRI

论文作者

Galve, F., Alonso, J., Algarín, J. M., Benlloch, J. M.

论文摘要

Nyquist-Shannon定理指出,当采样率达到了检测到的连续时间信号的带宽的两倍时,通过离散傅立叶协议可访问的信息会饱和。该最大速率(NS-LIMIT)在磁共振成像(MRI)中起着重要作用。然而,考虑到相关的先验知识可用,傅立叶分析以外的其他重建方法可以从相对于NS-LIMIT的数据中提取有用的信息。在这里,我们介绍了被置换的过采样MRI(PECOS),该方法可利用数据过采样,并与MRI系统中电磁场和旋转之间的物理相互作用相结合。在PECO中,高度超过时的K空间数据被馈入Kaczmarz的代数重建算法的相结合变体,其中对信号的预期旋转贡献的先验知识已编码为编码矩阵。 PECO可以通过沿频率编码的方向过采样来将PECO用于在相关方案中进行扫描,这在合理条件下在MRI系统中是无害的。我们发现,重建质量可以比NS限制的收购和传统的傅立叶重建更高的情况。此外,我们比较了各种编码脉冲序列以及图像重建协议的性能,并发现K空间中的加速螺旋轨迹与代数重建技术相结合是特别有利的。所提出的采样和重建方法能够改善完全采样的K空间轨迹的图像质量,同时允许在没有正则化或信号外推到未测量区域的情况下加速或不足采样。

The Nyquist-Shannon theorem states that the information accessible by discrete Fourier protocols saturates when the sampling rate reaches twice the bandwidth of the detected continuous time signal. This maximum rate (the NS-limit) plays a prominent role in Magnetic Resonance Imaging (MRI). Nevertheless, reconstruction methods other than Fourier analysis can extract useful information from data oversampled with respect to the NS-limit, given that relevant prior knowledge is available. Here we present PhasE-Constrained OverSampled MRI (PECOS), a method that exploits data oversampling in combination with prior knowledge of the physical interactions between electromagnetic fields and spins in MRI systems. In PECOS, highly oversampled-in-time k-space data are fed into a phase-constrained variant of Kaczmarz's algebraic reconstruction algorithm, where prior knowledge of the expected spin contributions to the signal is codified into an encoding matrix. PECOS can be used for scan acceleration in relevant scenarios by oversampling along frequency-encoded directions, which is innocuous in MRI systems under reasonable conditions. We find situations in which the reconstruction quality can be higher than with NS-limited acquisitions and traditional Fourier reconstruction. Besides, we compare the performance of a variety of encoding pulse sequences as well as image reconstruction protocols, and find that accelerated spiral trajectories in k-space combined with algebraic reconstruction techniques are particularly advantageous. The proposed sampling and reconstruction method is able to improve image quality for fully-sampled k-space trajectories, while allowing accelerated or undersampled acquisitions without regularization or signal extrapolation to unmeasured regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源