论文标题
信息检索中的量子优势
Quantum Advantage in Information Retrieval
论文作者
论文摘要
随机访问代码提供了许多量子优势的示例,但仅涉及一种信息检索任务。我们介绍了一个相关的任务 - 鱼雷游戏 - 并证明它与可比的随机访问代码相比,它具有更大的量子优势。与离散的Wigner函数有关的分析,通过分析出现了涉及准备和衡量协议的完美量子策略。该示例在策略游戏战斗机的和平主义者版本中将其利用为运营优势。我们指出了量子系统的特征,该系统可以在任何有限的内存信息检索任务中实现量子优势。虽然准备上下文性与随机访问编码的优势相关联,但我们在这里重点介绍了一个称为顺序上下文性的不同特征。它不仅有必要和足够的量子优势,而且还足以量化优势程度。我们针对鱼雷游戏的完美QUTRIT策略需要与非上下文隐藏变量的最强类型的不一致类型,从而揭示了相对于这些假设的逻辑悖论。
Random access codes have provided many examples of quantum advantage in communication, but concern only one kind of information retrieval task. We introduce a related task - the Torpedo Game - and show that it admits greater quantum advantage than the comparable random access code. Perfect quantum strategies involving prepare-and-measure protocols with experimentally accessible three-level systems emerge via analysis in terms of the discrete Wigner function. The example is leveraged to an operational advantage in a pacifist version of the strategy game Battleship. We pinpoint a characteristic of quantum systems that enables quantum advantage in any bounded-memory information retrieval task. While preparation contextuality has previously been linked to advantages in random access coding we focus here on a different characteristic called sequential contextuality. It is shown not only to be necessary and sufficient for quantum advantage, but also to quantify the degree of advantage. Our perfect qutrit strategy for the Torpedo Game entails the strongest type of inconsistency with non-contextual hidden variables, revealing logical paradoxes with respect to those assumptions.