论文标题
Argyres-Douglas理论的较高形式对称性
Higher Form Symmetries of Argyres-Douglas Theories
论文作者
论文摘要
我们确定所有4D $ \ MATHCAL {N} = 2 $理论的1形对称性的结构,这些理论在IIB类型的类型IIB字符串理论方面具有关于孤立的超表面奇异性的理论。这是一大群模型,其中包括Argyres-Douglas理论和其他许多模型。尽管缺乏对大多数此类理论的已知量规理论描述,但我们发现可以通过仔细分析IIB设置中无穷大的RR通量的非交通性行为来获得1形对称性的光谱。最终的结果承认,就BPS颤动而言,一个非常紧凑的领域理论重新进行了重新制定。在$(\ mathfrak {g},\ mathfrak {g}')$ cecotti-neitzke-vafa找到的$(\ mathfrak {g}')的情况下,我们将详细说明我们的方法。如果已经对此类理论提出了$ \ Mathcal {n} = 1 $量学理论的描述,那么我们发现这种$ \ Mathcal {n} = 1 $ lagrangian流的1形对称性与实际Argyres-Doughas固定点的1 $ lagrangian流量之间的一致性。
We determine the structure of 1-form symmetries for all 4d $\mathcal{N} = 2$ theories that have a geometric engineering in terms of type IIB string theory on isolated hypersurface singularities. This is a large class of models, that includes Argyres-Douglas theories and many others. Despite the lack of known gauge theory descriptions for most such theories, we find that the spectrum of 1-form symmetries can be obtained via a careful analysis of the non-commutative behaviour of RR fluxes at infinity in the IIB setup. The final result admits a very compact field theoretical reformulation in terms of the BPS quiver. We illustrate our methods in detail in the case of the $(\mathfrak{g}, \mathfrak{g}')$ Argyres-Douglas theories found by Cecotti-Neitzke-Vafa. In those cases where $\mathcal{N} = 1$ gauge theory descriptions have been proposed for theories within this class, we find agreement between the 1-form symmetries of such $\mathcal{N} = 1$ Lagrangian flows and those of the actual Argyres-Douglas fixed points, thus giving a consistency check for these proposals.