论文标题

关于具有给定度序列的3个规则随机图和随机图的模块化

On the modularity of 3-regular random graphs and random graphs with given degree sequences

论文作者

Lichev, Lyuben, Mitsche, Dieter

论文摘要

图的模块化是衡量其社区结构的参数。其值越高($ 0 $和$ 1 $),图形越多。 在本文中,我们表明,随机$ 3 $定期图的模块化至少是$ 0.667026 $渐近(A.A.S.),从而证明了McDiarmid和Skerman的猜想。我们还改善了A.A.S.上限给出$ 0.789998 $。 对于均匀选择的图形$ g_n $,比给定的有限度序列具有平均度$ d(g_n)$的平均度序列,并带有$ | cc(g_n)| $许多连接的组件,我们区分了两个巨大组件存在的制度。在亚临界方案中,我们计算模块化的第二项。在超临界制度中,我们证明有$ \ varepsilon> 0 $,对于其中,模块化为A.A.S.至少\ begin {equation*} \ dfrac {2 \ left(1-μ\ right)} {d(g_n)}+\ varepsilon,\ end \ end {equation*},其中$μ$是$μ$几乎是$ \ dfrac {| cc {| cc(g_n)|

The modularity of a graph is a parameter that measures its community structure; the higher its value (between $0$ and $1$), the more clustered the graph is. In this paper we show that the modularity of a random $3$-regular graph is at least $0.667026$ asymptotically almost surely (a.a.s.), thereby proving a conjecture of McDiarmid and Skerman. We also improve the a.a.s. upper bound given therein to $0.789998$. For a uniformly chosen graph $G_n$ over a given bounded degree sequence with average degree $d(G_n)$ and with $|CC(G_n)|$ many connected components, we distinguish two regimes with respect to the existence of a giant component. In the subcritical regime, we compute the second term of the modularity. In the supercritical regime, we prove that there is $\varepsilon > 0$, for which the modularity is a.a.s. at least \begin{equation*} \dfrac{2\left(1 - μ\right)}{d(G_n)}+\varepsilon, \end{equation*} where $μ$ is the asymptotically almost sure limit of $\dfrac{|CC(G_n)|}{n}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源