论文标题
双耦合微孔子中可重构完美孤子晶体的切换动力学
Switching dynamics of reconfigurable perfect soliton crystals in dual-coupled microresonators
论文作者
论文摘要
双耦合结构通常用于通过可控的避免模式交叉(AMX)主动改变微孔子的局部分散。在本文中,我们研究了基于双耦合微孔子的完美孤子晶体(PSC)的可重构性。使用干扰的Lugiato-Lefever方程(LLE)在数值上模拟PSC的开关动力学。在切换过程中观察到非线性现象,例如唯一的重新安排,合并和爆发。特别是,这是我们第一次发现了一个未开发的$ PSC $ $ $ $区域$在Microcomb Power-DeTuning Phane平面中。在$ PSC $ $ $区域$中,PSC状态的孤子号($ n $)可以以无缺陷的方式连续和双向切换,从而验证我们计划的可行性和优势。 PSC的可重构性将进一步解放微观群在广泛的字段中的应用潜力,包括频率计量,光学通信和信号处理系统。
Dual-coupled structure is typically used to actively change the local dispersion of microresonator through controllable avoided mode crossings (AMXs). In this paper, we investigate the reconfigurability of perfect soliton crystals (PSCs) based on dual-coupled microresonators. The switching dynamics of PSCs are numerically simulated using perturbed Lugiato-Lefever equation (LLE). Nonlinear phenomena such as solitons rearranging, merging and bursting are observed in the switching process. Specially, for the first time, we have discovered an unexplored $PSC$ $region$ in the microcomb power-detuning phase plane. In $PSC$ $region$, the soliton number ($N$) of PSC state can be switched successively and bidirectionally in a defect-free fashion, verifying the feasibility and advantages of our scheme. The reconfigurability of PSCs would further liberate the application potential of microcombs in a wide range of fields, including frequency metrology, optical communications, and signal-processing systems.