论文标题

深入的行为理解和使用:行为信息学方法

In-Depth Behavior Understanding and Use: The Behavior Informatics Approach

论文作者

Cao, Longbing

论文摘要

对人类行为的深入分析越来越被公认为是披露室内驱动力,原因和对企业的影响时的关键手段,以处理许多具有挑战性的问题。虚拟组织中行为的建模和分析是一个开放区域。传统的行为建模主要依赖于行为科学和社会科学角度的定性方法。所谓的行为分析实际上是基于人口统计和业务用法数据,在该数据中,以行为为导向的元素隐藏在常规收集的交易数据中。结果,对本地行为意图,生命周期和对复杂问题和业务问题的影响进行深入审查是无效甚至不可能的。我们提出了行为信息学(BI)的方法,以通过从源数据到行为数据的转换来支持明确和定量行为的参与,并进一步对行为模式和影响进行真正的分析。 BI由关键组成部分组成,包括行为表示,行为数据构建,行为影响分析,行为模式分析,行为模拟以及行为表现和行为使用。我们讨论了行为和抽象行为模型的概念,以及BI的研究任务,过程和理论基础。实质性实验表明,BI可以通过找到更深入,更有信息的模式,从而深入了解更深入的行为理解,从而极大地补充现有的经验和特定手段。 BI创建了新的方向和手段,以增强物理和虚拟组织中行为的定量,形式和系统的建模和分析。

The in-depth analysis of human behavior has been increasingly recognized as a crucial means for disclosing interior driving forces, causes and impact on businesses in handling many challenging issues. The modeling and analysis of behaviors in virtual organizations is an open area. Traditional behavior modeling mainly relies on qualitative methods from behavioral science and social science perspectives. The so-called behavior analysis is actually based on human demographic and business usage data, where behavior-oriented elements are hidden in routinely collected transactional data. As a result, it is ineffective or even impossible to deeply scrutinize native behavior intention, lifecycle and impact on complex problems and business issues. We propose the approach of Behavior Informatics (BI), in order to support explicit and quantitative behavior involvement through a conversion from source data to behavioral data, and further conduct genuine analysis of behavior patterns and impacts. BI consists of key components including behavior representation, behavioral data construction, behavior impact analysis, behavior pattern analysis, behavior simulation, and behavior presentation and behavior use. We discuss the concepts of behavior and an abstract behavioral model, as well as the research tasks, process and theoretical underpinnings of BI. Substantial experiments have shown that BI has the potential to greatly complement the existing empirical and specific means by finding deeper and more informative patterns leading to greater in-depth behavior understanding. BI creates new directions and means to enhance the quantitative, formal and systematic modeling and analysis of behaviors in both physical and virtual organizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源