论文标题

低规律性良好,用于圆上的广义​​benjamin-ono方程

Low regularity well-posedness for generalized Benjamin-Ono equations on the circle

论文作者

Kim, Kihyun, Schippa, Robert

论文摘要

显示了具有四分之一或较高非线性和周期性边界条件的广义本杰明·诺方程的新的低规律性良好性结果。我们使用短时傅立叶变换限制方法和修改能量来克服衍生物损失。以前,Molinet- ribaud通过量规变换建立了$ h^{1}(\ mathbb {t},\ mathbb {r})$的本地良好。我们以$ h^{s}(\ Mathbb {t},\ Mathbb {r})$,$ s> 1/2 $和本地良好的质量和local-h^{s}(s s s}(\ Mathbb {t},\ MathBB {r})$ geq 3中,我们显示了本地存在和先验估计。在四分之一的非线性的情况下,我们证明了以较小的初始数据为条件的全球溶液存在。

New low regularity well-posedness results for the generalized Benjamin-Ono equations with quartic or higher nonlinearity and periodic boundary conditions are shown. We use the short-time Fourier transform restriction method and modified energies to overcome the derivative loss. Previously, Molinet--Ribaud established local well-posedness in $H^{1}(\mathbb{T},\mathbb{R})$ via gauge transforms. We show local existence and a priori estimates in $H^{s}(\mathbb{T},\mathbb{R})$, $s>1/2$, and local well-posedness in $H^{s}(\mathbb{T},\mathbb{R})$, $s\geq3/4$ without using gauge transforms. In case of quartic nonlinearity we prove global existence of solutions conditional upon small initial data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源