论文标题

依次沉积与常规非富烯有机太阳能电池:界面陷阱状态,垂直分层和激子解离

Sequentially Deposited versus Conventional Nonfullerene Organic Solar Cells: Interfacial Trap States, Vertical Stratification, and Exciton Dissociation

论文作者

Zhang, Jiangbin, Futscher, Moritz H., Lami, Vincent, Kosasih, Felix U., Cho, Changsoon, Gu, Qinying, Sadhanala, Aditya, Pearson, Andrew J., Kan, Bin, Divitini, Giorgio, Wan, Xiangjian, Credgington, Daniel, Greenham, Neil C., Chen, Yongsheng, Ducati, Caterina, Ehrler, Bruno, Vaynzof, Yana, Friend, Richard H., Bakulin, Artem A.

论文摘要

批量 - 直接结(BHJ)非富集烯有机太阳能电池是由依次沉积的供体和受体层制备的(SQ-BHJ)最近有望非常有效,环保,并且与大面积和滚动面积和掷骰制造兼容。但是,在很大程度上没有探索供体界面上的相关光体物理学和供体受体分布的垂直异质性,对激子解离和设备性能至关重要。此处,采用了稳态和时间分辨的光学和电气技术来表征界面陷阱状态。与界面状态的发光效率及其非辐射性重组的相关性,界面陷阱状态的特征在平方-BHJ中的人群中的界面陷阱状态可能比AS-Cast-Cast BHJ(C-BHJ)高约50%,这可能会限制设备电压输出。横截面能量分散性X射线光谱和紫外光光谱光谱谱分析直接使供体 - 受体垂直分层的精度为1-2 nm。从提出的“针头”模型中,高激子解离效率合理化。我们的研究强调了连续沉积以制造有效太阳能电池的希望,并通过消除界面陷阱状态来改善电压输出和整体设备性能。

Bulk-heterojunction (BHJ) non-fullerene organic solar cells prepared from sequentially deposited donor and acceptor layers (sq-BHJ) have recently been promising to be highly efficient, environmentally friendly, and compatible with large area and roll-to-toll fabrication. However, the related photophysics at donor-acceptor interface and the vertical heterogeneity of donor-acceptor distribution, critical for exciton dissociation and device performance, are largely unexplored. Herein, steady-state and time-resolved optical and electrical techniques are employed to characterize the interfacial trap states. Correlation with the luminescent efficiency of interfacial states and its non-radiative recombination, interfacial trap states are characterized to be about 50% more populated in the sq-BHJ than as-cast BHJ (c-BHJ), which probably limits the device voltage output. Cross-sectional energy-dispersive X-ray spectroscopy and ultraviolet photoemission spectroscopy depth profiling directly vizualize the donor-acceptor vertical stratification with a precision of 1-2 nm. From the proposed "needle" model, the high exciton dissociation efficiency is rationalized. Our study highlights the promise of sequential deposition to fabricate efficient solar cells, and points towards improving the voltage output and overall device performance via eliminating interfacial trap states.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源