论文标题

通过视觉分析重新访问可修改的面积单位问题

Revisiting the Modifiable Areal Unit Problem in Deep Traffic Prediction with Visual Analytics

论文作者

Zeng, Wei, Lin, Chengqiao, Lin, Juncong, Jiang, Jincheng, Xia, Jiazhi, Turkay, Cagatay, Chen, Wei

论文摘要

深度学习方法正在越来越多地用于城市交通预测,其中时空交通数据被汇总为顺序组织的矩阵,然后将其送入基于卷积的残留神经网络中。但是,此类聚合过程中广泛已知的可修改的面积单位问题可能会导致网络输入中的扰动。这个问题可能会极大地破坏功能嵌入和预测,从而使深层网络对专家有用得多。本文通过利用单元可视化技术来应对这一挑战,该技术能够调查城市交通数据的动态多种多样聚合与神经网络预测之间的多一关系。通过与领域专家的定期交流,我们设计和开发了一个视觉分析解决方案,该解决方案是1)配备了高级双变量菌落的双变量图,同时描述了空间之间的输入流量和预测错误,2)摩尔斯I STACTATS I STACTPLOT,该散点图提供了局部的局部指标。跨尺度的比较。我们通过一系列案例研究评估了我们的方法,涉及深圳出租车旅行的真实数据集,并通过对领域专家的访谈进行评估。我们观察到,地理量表的变化对预测性能有重要影响,并且对动态变化的投入和输出的交互式视觉探索使专家在深度交通预测模型的发展中受益。

Deep learning methods are being increasingly used for urban traffic prediction where spatiotemporal traffic data is aggregated into sequentially organized matrices that are then fed into convolution-based residual neural networks. However, the widely known modifiable areal unit problem within such aggregation processes can lead to perturbations in the network inputs. This issue can significantly destabilize the feature embeddings and the predictions, rendering deep networks much less useful for the experts. This paper approaches this challenge by leveraging unit visualization techniques that enable the investigation of many-to-many relationships between dynamically varied multi-scalar aggregations of urban traffic data and neural network predictions. Through regular exchanges with a domain expert, we design and develop a visual analytics solution that integrates 1) a Bivariate Map equipped with an advanced bivariate colormap to simultaneously depict input traffic and prediction errors across space, 2) a Morans I Scatterplot that provides local indicators of spatial association analysis, and 3) a Multi-scale Attribution View that arranges non-linear dot plots in a tree layout to promote model analysis and comparison across scales. We evaluate our approach through a series of case studies involving a real-world dataset of Shenzhen taxi trips, and through interviews with domain experts. We observe that geographical scale variations have important impact on prediction performances, and interactive visual exploration of dynamically varying inputs and outputs benefit experts in the development of deep traffic prediction models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源