论文标题

检测可疑行为:如何通过神经网络处理视觉相似性

Detecting Suspicious Behavior: How to Deal with Visual Similarity through Neural Networks

论文作者

Martínez-Mascorro, Guillermo A., Ortiz-Bayliss, José C., Terashima-Marín, Hugo

论文摘要

可疑行为可能威胁到安全,资产,生命或自由。此行为没有特定的模式,这使检测并定义它的任务变得复杂。即使对于人类观察者,在监视视频中发现可疑行为也很复杂。文献中提供了一些解决异常和可疑行为有关的问题的建议。但是,由于不同的视觉相似性不同的类别,它们通常会遭受高阳性率。犯罪前行为方法删除了与犯罪委员会有关的信息,以在犯罪发生之前关注可疑行为。来自不同类型的犯罪的结果样本与正常行为样本具有高视觉相似性。为了解决这个问题,我们实施了3D卷积神经网络,并在不同的方法下对其进行了训练。此外,我们在过滤器参数中测试了不同的值,以优化计算资源。最后,使用不同训练方法的性能之间的比较显示了改善监视视频中可疑行为检测的最佳选择。

Suspicious behavior is likely to threaten security, assets, life, or freedom. This behavior has no particular pattern, which complicates the tasks to detect it and define it. Even for human observers, it is complex to spot suspicious behavior in surveillance videos. Some proposals to tackle abnormal and suspicious behavior-related problems are available in the literature. However, they usually suffer from high false-positive rates due to different classes with high visual similarity. The Pre-Crime Behavior method removes information related to a crime commission to focus on suspicious behavior before the crime happens. The resulting samples from different types of crime have a high-visual similarity with normal-behavior samples. To address this problem, we implemented 3D Convolutional Neural Networks and trained them under different approaches. Also, we tested different values in the number-of-filter parameter to optimize computational resources. Finally, the comparison between the performance using different training approaches shows the best option to improve the suspicious behavior detection on surveillance videos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源