论文标题
n维Matérn群集过程的KTH距离分布
kth Distance Distributions of n-Dimensional Matérn Cluster Process
论文作者
论文摘要
在这封信中,我们得出了$ k $ th的联系人距离(CD)和最近的邻居距离(nnd)的CDF(累积分配功能),$ n $ dipersonional($ n $ -d)Matérn群集过程(MCP)。我们提出了一种基于随机变量(RV)的概率生成函数(PGF)的新方法,该方法表示任意半径球中的点数以得出其概率质量函数(PMF)。所提出的方法是一般的,可用于具有已知概率生成功能(PGFL)的任何点过程。我们还通过数值模拟来验证我们的分析,并使用介绍的分析提供见解。我们还讨论了两个应用程序,即:蜂窝网络中的宏观多样性和D2D网络中的缓存,以研究聚类对性能的影响。
In this letter, we derive the CDF (cumulative distribution function) of $k$th contact distance (CD) and nearest neighbor distance (NND) of the $n$-dimensional ($n$-D) Matérn cluster process (MCP). We present a new approach based on the probability generating function (PGF) of the random variable (RV) denoting the number of points in a ball of arbitrary radius to derive its probability mass function (PMF). The proposed method is general and can be used for any point process with known probability generating functional (PGFL). We also validate our analysis via numerical simulations and provide insights using the presented analysis. We also discuss two applications, namely: macro-diversity in cellular networks and caching in D2D networks, to study the impact of clustering on the performance.