论文标题

AMM:自适应多线性网格

AMM: Adaptive Multilinear Meshes

论文作者

Bhatia, Harsh, Hoang, Duong, Morrical, Nate, Pascucci, Valerio, Bremer, Peer-Timo, Lindstrom, Peter

论文摘要

自适应表示越来越有必要减少大规模数据的内存和盘中足迹。通常的解决方案沿两个主题进行了广泛的设计:降低数据精度,例如,通过压缩或调整数据分辨率,例如使用空间层次结构。最近的研究表明,结合两种方法,即同时适应分辨率和精确度,可以为使用它们单独使用它们带来巨大的收益。但是,目前尚无对创建和评估此类表示形式的实际解决方案。在这项工作中,我们提出了一种新的分辨率 - 先进自适应表示形式,以支持混合数据减少方案并为现有工具和算法提供接口。通过空间层次结构的新颖性,我们的表示,自适应多线性网格(AMM)可大大减少网格尺寸。 AMM创建了均匀采样标量数据的分段多线性表示,并可以在整合性,连续性和覆盖范围内有选择地放松或执行限制,从而提供灵活的自适应表示。 AMM还支持使用混合精确值代表该函数,以进一步降低数据降低。我们描述了使用数据的任意顺序逐步创建AMM的实用方法,并在六种类型的分辨率和精度数据流上演示了AMM。通过通过VTK与最先进的渲染工具接口,我们证明了我们代表的可视化技术的实用和计算优势。通过开放源以创建AMM的工具,我们对社区可访问的数据减少进行了这样的评估,我们希望这将促进新的机会和未来的数据减少计划

Adaptive representations are increasingly indispensable for reducing the in-memory and on-disk footprints of large-scale data. Usual solutions are designed broadly along two themes: reducing data precision, e.g., through compression, or adapting data resolution, e.g., using spatial hierarchies. Recent research suggests that combining the two approaches, i.e., adapting both resolution and precision simultaneously, can offer significant gains over using them individually. However, there currently exist no practical solutions to creating and evaluating such representations at scale. In this work, we present a new resolution-precision-adaptive representation to support hybrid data reduction schemes and offer an interface to existing tools and algorithms. Through novelties in spatial hierarchy, our representation, Adaptive Multilinear Meshes (AMM), provides considerable reduction in the mesh size. AMM creates a piecewise multilinear representation of uniformly sampled scalar data and can selectively relax or enforce constraints on conformity, continuity, and coverage, delivering a flexible adaptive representation. AMM also supports representing the function using mixed-precision values to further the achievable gains in data reduction. We describe a practical approach to creating AMM incrementally using arbitrary orderings of data and demonstrate AMM on six types of resolution and precision datastreams. By interfacing with state-of-the-art rendering tools through VTK, we demonstrate the practical and computational advantages of our representation for visualization techniques. With an open-source release of our tool to create AMM, we make such evaluation of data reduction accessible to the community, which we hope will foster new opportunities and future data reduction schemes

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源