论文标题
非线性1-D抛物线PDES的空间SUP-NORM中ISS估算值
ISS Estimates in the Spatial Sup-Norm for Nonlinear 1-D Parabolic PDEs
论文作者
论文摘要
本文提供了新颖的输入到国家稳定性(ISS)式的最大原理估计值,用于高度非线性1-D抛物线偏微分方程(PDES)的经典解决方案。通过使用ISS Lyapunov功能为SUP Norm进行ISS风格的最大原则估计的推导。这些估计值提供了有关分布式和边界输入的状态SUP Norm中淡入记忆ISS的估计。获得的结果可以处理具有非线性和非本地内域术语/边界条件的抛物线PDE。三个说明性示例表明,拟议方法论在国家SUP规范中衍生ISS估计值的效率。
This paper provides novel Input-to-State Stability (ISS)-style maximum principle estimates for classical solutions of highly nonlinear 1-D parabolic Partial Differential Equations (PDEs). The derivation of the ISS-style maximum principle estimates is performed by using an ISS Lyapunov Functional for the sup norm. The estimates provide fading memory ISS estimates in the sup norm of the state with respect to distributed and boundary inputs. The obtained results can handle parabolic PDEs with nonlinear and non-local in-domain terms/boundary conditions. Three illustrative examples show the efficiency of the proposed methodology for the derivation of ISS estimates in the sup norm of the state.