论文标题

使用弱标签的域自适应语义分割

Domain Adaptive Semantic Segmentation Using Weak Labels

论文作者

Paul, Sujoy, Tsai, Yi-Hsuan, Schulter, Samuel, Roy-Chowdhury, Amit K., Chandraker, Manmohan

论文摘要

学习语义细分模型需要大量的像素标签。但是,标记的数据只能在与所需目标域不同的域中大量可用,而目标域只有最小或没有注释。在这项工作中,我们提出了一个新型的框架,用于在目标域中使用图像级弱标记在语义分割中适应。可以根据无监督的域适应(UDA)的模型预测获得弱标签,也可以从新的弱监督域适应性(WDA)范式中的人类注释中获得,用于语义分割。使用弱标签既实用又有用,因为(i)收集图像级目标注释在WDA中相当便宜,并且在UDA中没有成本,并且(ii)它为类别域的一致性打开了机会。我们的框架使用弱标签来启用特征对齐和伪标记之间的相互作用,从而在域适应过程中改善了这两者。具体来说,我们开发了一个弱标签分类模块来强制网络参与某些类别,然后使用此类培训信号来指导拟议的类别对齐方式。在实验中,我们在UDA中现有的最新面前显示了很大的改进,并在WDA环境中提出了新的基准。项目页面在http://www.nec-labs.com/~mas/weaksegda上。

Learning semantic segmentation models requires a huge amount of pixel-wise labeling. However, labeled data may only be available abundantly in a domain different from the desired target domain, which only has minimal or no annotations. In this work, we propose a novel framework for domain adaptation in semantic segmentation with image-level weak labels in the target domain. The weak labels may be obtained based on a model prediction for unsupervised domain adaptation (UDA), or from a human annotator in a new weakly-supervised domain adaptation (WDA) paradigm for semantic segmentation. Using weak labels is both practical and useful, since (i) collecting image-level target annotations is comparably cheap in WDA and incurs no cost in UDA, and (ii) it opens the opportunity for category-wise domain alignment. Our framework uses weak labels to enable the interplay between feature alignment and pseudo-labeling, improving both in the process of domain adaptation. Specifically, we develop a weak-label classification module to enforce the network to attend to certain categories, and then use such training signals to guide the proposed category-wise alignment method. In experiments, we show considerable improvements with respect to the existing state-of-the-arts in UDA and present a new benchmark in the WDA setting. Project page is at http://www.nec-labs.com/~mas/WeakSegDA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源