论文标题

偏斜的链接回归模型,用于不平衡的算力响应,并申请人寿保险

Skewed link regression models for imbalanced binary response with applications to life insurance

论文作者

Yin, Shuang, Dey, Dipak K., Valdez, Emiliano A., Gan, Guojun, Vadiveloo, Jeyaraj

论文摘要

对于在一段时间内观察到的人寿保险单的投资组合,例如一年,死亡率通常是罕见的事件。当我们检查这种投资组合的垂死或不垂死的结果时,我们会产生不平衡的二进制响应。流行的logistic和概率回归模型可能不适合不平衡的综合响应,因为模型估计可能是偏见的,如果无法正确解决,它可能会导致严重的不良预测。在本文中,我们建议使用偏斜的链接回归模型(广义极值,Weibull和Frechet Link模型)作为更优质的模型来处理不平衡的综合响应。我们在提出的链路函数下采用全贝叶斯方法为广义线性模型(GLM)采用,以帮助更好地解释高偏度。为了校准我们提出的贝叶斯模型,我们使用了从人寿保险公司的投资组合中获得的死亡索赔经验的真实数据集。使用Metropolis-Hastings算法和贝叶斯模型选择和比较获得了参数的贝叶斯估计值,使用了偏差信息准则(DIC)统计量。对于我们的死亡率数据集,我们发现这些偏斜的链接模型比具有标准链路函数的广泛使用的二进制模型要优越。我们通过测量和比较汇总的死亡计数和死亡益处来评估不同基础模型的预测能力。

For a portfolio of life insurance policies observed for a stated period of time, e.g., one year, mortality is typically a rare event. When we examine the outcome of dying or not from such portfolios, we have an imbalanced binary response. The popular logistic and probit regression models can be inappropriate for imbalanced binary response as model estimates may be biased, and if not addressed properly, it can lead to serious adverse predictions. In this paper, we propose the use of skewed link regression models (Generalized Extreme Value, Weibull, and Frechet link models) as more superior models to handle imbalanced binary response. We adopt a fully Bayesian approach for the generalized linear models (GLMs) under the proposed link functions to help better explain the high skewness. To calibrate our proposed Bayesian models, we use a real dataset of death claims experience drawn from a life insurance company's portfolio. Bayesian estimates of parameters were obtained using the Metropolis-Hastings algorithm and for Bayesian model selection and comparison, the Deviance Information Criterion (DIC) statistic has been used. For our mortality dataset, we find that these skewed link models are more superior than the widely used binary models with standard link functions. We evaluate the predictive power of the different underlying models by measuring and comparing aggregated death counts and death benefits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源