论文标题

长期金融衍生品的深度对冲

Deep Hedging of Long-Term Financial Derivatives

论文作者

Carbonneau, Alexandre

论文摘要

这项研究为长期金融衍生品的全球套期保值提供了一种深厚的强化学习方法。与Coleman等人相似的设置。 (2007年)被考虑在具有棘轮功能的可变年金中嵌入的回溯选项的风险管理。 Buehler等人的深度对冲算法。 (2019a)用于优化代表具有二次和非二次惩罚的全球对冲政策的神经网络。据作者所知,这是第一篇论文,通过使用各种对冲工具(例如,基础和标准选项)以及在存在公平风险的情况下,为长期或有规定的长期索赔进行了广泛的基准制定。蒙特卡洛实验证明了非二次全球对冲的极优势,因为它同时导致下行风险指标比最佳基准高两到三倍,并且在显着的对冲增长中。分析表明,神经网络只有通过对金融市场的模拟表现出这些功能,才能有效地将其对冲决策适应不同的惩罚和风险化资产动态事实。数值结果还表明,非季度全球政策更加旨在成为长期股权风险,这需要获得股票风险溢价。

This study presents a deep reinforcement learning approach for global hedging of long-term financial derivatives. A similar setup as in Coleman et al. (2007) is considered with the risk management of lookback options embedded in guarantees of variable annuities with ratchet features. The deep hedging algorithm of Buehler et al. (2019a) is applied to optimize neural networks representing global hedging policies with both quadratic and non-quadratic penalties. To the best of the author's knowledge, this is the first paper that presents an extensive benchmarking of global policies for long-term contingent claims with the use of various hedging instruments (e.g. underlying and standard options) and with the presence of jump risk for equity. Monte Carlo experiments demonstrate the vast superiority of non-quadratic global hedging as it results simultaneously in downside risk metrics two to three times smaller than best benchmarks and in significant hedging gains. Analyses show that the neural networks are able to effectively adapt their hedging decisions to different penalties and stylized facts of risky asset dynamics only by experiencing simulations of the financial market exhibiting these features. Numerical results also indicate that non-quadratic global policies are significantly more geared towards being long equity risk which entails earning the equity risk premium.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源