论文标题

节能无人机辅助移动边缘计算:资源分配和轨迹优化

Energy-Efficient UAV-Assisted Mobile Edge Computing: Resource Allocation and Trajectory Optimization

论文作者

Li, Mushu, Cheng, Nan, Gao, Jie, Wang, Yinlu, Zhao, Lian, Xuemin, Shen

论文摘要

在本文中,我们研究了无人机(UAV)辅助移动边缘计算(MEC),目的是通过最少的无人机耗能来优化计算卸载。在考虑的情况下,无人机扮演着空中云的角色,以收集和处理地面用户卸载的计算任务。鉴于用户的服务要求,我们旨在通过共同优化无人机轨迹,用户传输功率和计算负载分配来最大化无人机的能源效率。由此产生的优化问题对应于非convex分数编程,并且采用了Dinkelbach算法和连续的凸近似(SCA)技术来解决它。此外,我们将问题分解为分布式和并行问题解决的多个子问题。为了应对用户移动性知识有限时的情况,我们采用了一种空间分配估计技术来预测地面用户的位置,以便仍然可以应用所提出的方法。仿真结果证明了所提出的方法对最大化无人机的能源效率的有效性。

In this paper, we study unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) with the objective to optimize computation offloading with minimum UAV energy consumption. In the considered scenario, a UAV plays the role of an aerial cloudlet to collect and process the computation tasks offloaded by ground users. Given the service requirements of users, we aim to maximize UAV energy efficiency by jointly optimizing the UAV trajectory, the user transmit power, and computation load allocation. The resulting optimization problem corresponds to nonconvex fractional programming, and the Dinkelbach algorithm and the successive convex approximation (SCA) technique are adopted to solve it. Furthermore, we decompose the problem into multiple subproblems for distributed and parallel problem solving. To cope with the case when the knowledge of user mobility is limited, we adopt a spatial distribution estimation technique to predict the location of ground users so that the proposed approach can still be applied. Simulation results demonstrate the effectiveness of the proposed approach for maximizing the energy efficiency of UAV.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源