论文标题

Cgenie Earth System模型中的海洋和大气甲烷循环

Oceanic and atmospheric methane cycling in the cGENIE Earth system model

论文作者

Reinhard, Christopher T., Olson, Stephanie L., Turner, Sandra Kirtland, Palike, Cecily, Kanzaki, Yoshiki, Ridgwell, Andy

论文摘要

甲烷周期是将行星气候,生物代谢以及碳,氧,硫和氢的全球生物地球化学循环联系起来的地球系统的关键组成部分。但是,目前缺乏的是一个数值模型,能够模拟可以生产和破坏甲烷的各种环境,并具有灵活性,并具有灵活性,不仅能够探索地球甲烷周期相对较新的扰动,而且还可以探索甲烷循环的甲烷循环,并在地球历史上降低了地球历史的降低和可能的其他范围范围内的甲烷循环以及相关的气候影响,并可能在其他范围内广泛地占据了其他范围。在这里,我们介绍了中间复合物地球系统模型CGENIE的海洋 - 大气甲烷循环的扩展,包括用于微生物甲烷生成的参数化大气光化学和方案,有氧甲烷营养和甲烷的厌氧氧化。我们描述了模型框架,将模型参数化与现代观测值进行比较,并通过一系列示例模拟说明模型的灵活性。尽管我们没有试图严格调整默认模型参数,但我们发现模拟的大气甲烷水平和海洋溶解的甲烷分布通常与现代和近期地球的经验约束非常吻合。最后,我们说明了该模型在理解瞬时碳注入到大气中产生的甲烷循环的时间依赖性行为的效用,并且现在的模型结合了研究海洋化学的影响以及微生物代谢对稳态大气丰度的影响。

The methane cycle is a key component of the Earth system that links planetary climate, biological metabolism, and the global biogeochemical cycles of carbon, oxygen, sulfur, and hydrogen. However, currently lacking is a numerical model capable of simulating a diversity of environments in the ocean where methane can be produced and destroyed, and with the flexibility to be able to explore not only relatively recent perturbations to Earth's methane cycle but also to probe methane cycling and associated climate impacts under the reducing conditions characteristic of most of Earth history and likely widespread on other Earth-like planets. Here, we present an expansion of the ocean-atmosphere methane cycle in the intermediate-complexity Earth system model cGENIE, including parameterized atmospheric photochemistry and schemes for microbial methanogenesis, aerobic methanotrophy, and anaerobic oxidation of methane. We describe the model framework, compare model parameterizations against modern observations, and illustrate the flexibility of the model through a series of example simulations. Though we make no attempt to rigorously tune default model parameters, we find that simulated atmospheric methane levels and marine dissolved methane distributions are generally in good agreement with empirical constraints for the modern and recent Earth. Finally, we illustrate the model's utility in understanding the time-dependent behavior of the methane cycle resulting from transient carbon injection into the atmosphere, and present model ensembles that examine the effects of oceanic chemistry and the thermodynamics of microbial metabolism on steady-state atmospheric methane abundance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源