论文标题

太阳系中的基于紫外线的科学:进步和下一步

Ultraviolet-Based Science in the Solar System: Advances and Next Steps

论文作者

Hendrix, Amanda R., Becker, Tracy M., Bodewits, Dennis, Bradley, E. Todd, Brooks, Shawn, Byron, Ben, Cahill, Josh, Clarke, John, Feaga, Lori, Feldman, Paul, Gladstone, G. Randall, Hansen, Candice J., Hibbitts, Charles, Koskinen, Tommi T., Magana, Lizeth, Molyneux, Philippa, Nikzad, Shouleh, Noonan, John, Pryor, Wayne, Raut, Ujjwal, Retherford, Kurt D., Roth, Lorenz, Royer, Emilie, Sciamma-O'Brien, Ella, Stern, Alan, Stockstill-Cahill, Karen, Vilas, Faith, West, Bob

论文摘要

我们回顾了近期对太阳系目标的紫外线观察的重要性,并讨论了未来十年进一步测量,仪器和实验室工作的必要性。 在过去的十年中,使用紫外线(UV)光谱技术在太阳系科学中取得了许多重要的进步。紫外线成像光谱法以前几乎完全用于研究巨型行星大气,行星外流和彗星排放的研究,最近应用了更广泛的应用。紫外线恒星的掩盖观察结果部分发现了土星月球土壤的间歇泉般的羽流,并且该技术被用来表征整个卡西尼任务中的羽流和喷气机。使用哈勃太空望远镜(HST)UV发射和吸收成像,在木星的月球欧罗巴(Europa)上发现了类似活动风格的证据。在整个太阳系的其他卫星和小体处,紫外线光谱已用于寻找活动,探针表面组成和划定空间风化效果。紫外线光度研究已用于发现岩石结构。在过去的1 - 2年中,来自太阳系表面的紫外线成像光谱的见解已得到很大程度上获得,包括对小行星上的表面组成,空间风化效应(例如放射性物质产物)和挥发物的研究(例如[2] [39] [39] [48] [48] [76] [84] [84] [84] [84] [84]), [85])和冰冷的卫星(例如[38] [41-44] [45] [47] [65])。紫外线对某些物种,较小的污染物和晶粒尺寸敏感,通常在其他光谱方面未检测到。 在未来十年中,HST的观察结果可能会结束。至关重要的是,需要新的基础设施来加强未来的紫外线研究。这些需求包括开发工作,以帮助改善未来的紫外线观察和实验室工作,以帮助解释航天器数据。在未来十年中,紫外线仪器将是对各种目标的任务的关键工具,尤其是对于迅速扩大了对大气体的紫外线反射率调查的应用。

We review the importance of recent UV observations of solar system targets and discuss the need for further measurements, instrumentation and laboratory work in the coming decade. In the past decade, numerous important advances have been made in solar system science using ultraviolet (UV) spectroscopic techniques. Formerly used nearly exclusively for studies of giant planet atmospheres, planetary exospheres and cometary emissions, UV imaging spectroscopy has recently been more widely applied. The geyser-like plume at Saturn's moon Enceladus was discovered in part as a result of UV stellar occultation observations, and this technique was used to characterize the plume and jets during the entire Cassini mission. Evidence for a similar style of activity has been found at Jupiter's moon Europa using Hubble Space Telescope (HST) UV emission and absorption imaging. At other moons and small bodies throughout the solar system, UV spectroscopy has been utilized to search for activity, probe surface composition, and delineate space weathering effects; UV photometric studies have been used to uncover regolith structure. Insights from UV imaging spectroscopy of solar system surfaces have been gained largely in the last 1-2 decades, including studies of surface composition, space weathering effects (e.g. radiolytic products) and volatiles on asteroids (e.g. [2][39][48][76][84]), the Moon (e.g. [30][46][49]), comet nuclei (e.g. [85]) and icy satellites (e.g. [38][41-44][45][47][65]). The UV is sensitive to some species, minor contaminants and grain sizes often not detected in other spectral regimes. In the coming decade, HST observations will likely come to an end. New infrastructure to bolster future UV studies is critically needed. These needs include both developmental work to help improve future UV observations and laboratory work to help interpret spacecraft data. UV instrumentation will be a critical tool on missions to a variety of targets in the coming decade, especially for the rapidly expanding application of UV reflectance investigations of atmosphereless bodies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源