论文标题

Opensbli:用于在结构化网格上适用于可压缩流体动力学的异质计算体系结构的自动代码生成

OpenSBLI: Automated code-generation for heterogeneous computing architectures applied to compressible fluid dynamics on structured grids

论文作者

Lusher, David J., Jammy, Satya P., Sandham, Neil D.

论文摘要

Opensbli是一种在异质计算体系结构上用于可压缩流体动力学(CFD)的开源代码生成系统。 Opensbli用Python编写是在结构化曲线网格上的明确高阶差异求解器。电击捕获是通过选择高阶加权基本上非振荡(WENO)或靶向非振荡(TENO)方案进行的。 Opensbli在牛津并行结构(OP)域特定语言中生成完整的CFD求解器。 OPS库嵌入C代码中,可以在包括GPU在内的各种高性能计算体系结构上大规模平行执行代码。本文提出了一个代码基础,该代码基础已完全从较早的概念证明(Jacobs等,Jocs 18(2017),12-23)中,允许捕获冲击,对复杂几何形状的协调转换以及各种边界条件,包括有和没有热传递的固体墙。提出了一套验证和验证案例,并证明了过渡性冲击波边界层相互作用(SBLI)的大规模直接数值模拟(DNS)。该代码显示在多GPU簇上具有良好的弱尺度。我们证明,代码生成和域特定语言适合在新兴计算体系结构上对复杂流体流进行有效的大规模模拟。

OpenSBLI is an open-source code-generation system for compressible fluid dynamics (CFD) on heterogeneous computing architectures. Written in Python, OpenSBLI is an explicit high-order finite-difference solver on structured curvilinear meshes. Shock-capturing is performed by a choice of high-order Weighted Essentially Non-Oscillatory (WENO) or Targeted Essentially Non-Oscillatory (TENO) schemes. OpenSBLI generates a complete CFD solver in the Oxford Parallel Structured (OPS) domain specific language. The OPS library is embedded in C code, enabling massively-parallel execution of the code on a variety of high-performance-computing architectures, including GPUs. The present paper presents a code base that has been completely rewritten from the earlier proof of concept (Jacobs et al, JoCS 18 (2017), 12-23), allowing shock capturing, coordinate transformations for complex geometries, and a wide range of boundary conditions, including solid walls with and without heat transfer. A suite of validation and verification cases are presented, plus demonstration of a large-scale Direct Numerical Simulation (DNS) of a transitional Shockwave Boundary Layer Interaction (SBLI). The code is shown to have good weak and strong scaling on multi-GPU clusters. We demonstrate that code-generation and domain specific languages are suitable for performing efficient large-scale simulations of complex fluid flows on emerging computing architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源