论文标题

二维$ \ left(α,β\右)$ - constacyclic of Timate Rengtion of Pricite Field的长度代码

Two Dimensional $\left( α,β\right) $-Constacyclic Codes of arbitrary length over a Finite Field

论文作者

Bhardwaj, Swati, Raka, Madhu

论文摘要

在本文中,我们表征了二维$(α,β)$的代数结构 - 任意长度$ s。\ ell $及其双重的constacyclic代码。对于$α,β\ in \ {1,-1 \} $,我们为二维$(α,β)$ - constacyclic代码提供了必要和足够的条件。我们还表明,如果$ \ gcd(s,q)= 1 $,则二维$(α,1)$ - constacyclic code $ \ mathcal {c} $,$ n = s。最后,我们提供了一些自我偶然,iSodual,MDS和准扭曲代码的示例,这些代码对应于二维$(α,β)$ - constacyclic代码。

In this paper we characterize the algebraic structure of two-dimensional $(α,β)$-constacyclic codes of arbitrary length $s.\ell$ and of their duals. For $α,β\in \{1,-1\}$, we give necessary and sufficient conditions for a two-dimensional $(α,β)$-constacyclic code to be self-dual. We also show that a two-dimensional $(α,1 )$-constacyclic code $\mathcal{C}$ of length $n=s.\ell$ can not be self-dual if $\gcd(s,q)= 1$. Finally, we give some examples of self-dual, isodual, MDS and quasi-twisted codes corresponding to two-dimensional $(α,β)$-constacyclic codes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源