论文标题
确保多个数据提供商的计算框架免受恶意对手
Secure Computation Framework for Multiple Data Providers Against Malicious Adversaries
论文作者
论文摘要
由于安全多方计算的大力发展,已经提出了许多实用的安全计算方案。例如,已经对不同的安全拍卖机制进行了广泛的研究,可以保护投标隐私,同时满足各种经济特性。但是,据我们所知,它们都没有解决恶意安全模型中多个数据提供商(例如安全的云资源拍卖)的安全计算问题。在本文中,我们使用剪切和杂交电路的技术为针对恶意对手的多个数据提供商提供了一般的安全计算框架。具体而言,我们的框架检查输入与剪切范式的输入一致性,通过运行两个独立的乱码电路来进行恶意确保计算,并通过比较两个版本的输出版本来验证输出的正确性。理论分析表明,我们的框架与恶意计算方或恶意数据提供商的一部分相抵触。以安全的云资源拍卖为例,我们实施了框架。广泛的实验评估表明,在实践中可以接受拟议框架的性能。
Due to the great development of secure multi-party computation, many practical secure computation schemes have been proposed. As an example, different secure auction mechanisms have been widely studied, which can protect bid privacy while satisfying various economic properties. However, as far as we know, none of them solve the secure computation problems for multiple data providers (e.g., secure cloud resource auctions) in the malicious security model. In this paper, we use the techniques of cut-and-choose and garbled circuits to propose a general secure computation framework for multiple data providers against malicious adversaries. Specifically, our framework checks input consistency with the cut-and-choose paradigm, conducts maliciously secure computations by running two independent garbled circuits, and verifies the correctness of output by comparing two versions of outputs. Theoretical analysis shows that our framework is secure against a malicious computation party, or a subset of malicious data providers. Taking secure cloud resource auctions as an example, we implement our framework. Extensive experimental evaluations show that the performance of the proposed framework is acceptable in practice.