论文标题
认知视野:此句子是$ \ frac {1} {\ sqrt {2}}}(| true \ rangle + | false \ rangle)$
Epistemic Horizons: This Sentence is $\frac{1}{\sqrt{2}}(|True\rangle + |False\rangle)$
论文作者
论文摘要
在[找到。物理。 48.12(2018):1669],引入了“认知视野”的概念,以解释量子力学的许多令人困惑的特征。在那儿,结果表明,劳维尔的定理形成了诸如戈德利亚的不完整,图灵不完整的现象,罗素的悖论等现象,适用于测量环境,在衡量环境中产生了最大知识的界限,这些知识可以获得有关系统的最大知识,从而产生许多量子量的量子量。我们简要介绍了该框架,然后证明它自然会造成贝尔不平等的侵犯。然后,我们研究了由于爱因斯坦,波多尔斯基和罗森引起的论点,并展示了如何结论量子形式的不完整所需的反事实推断,这被认知高度的视野所禁止。同样,讨论了由于Hardy和Frauchiger-Renner引起的悖论,并发现从不兼容的环境中开发了不一致的信息组合。
In [Found. Phys. 48.12 (2018): 1669], the notion of 'epistemic horizon' was introduced as an explanation for many of the puzzling features of quantum mechanics. There, it was shown that Lawvere's theorem, which forms the categorical backdrop to phenomena such as Gödelian incompleteness, Turing undecidability, Russell's paradox and others, applied to a measurement context, yields bounds on the maximum knowledge that can be obtained about a system, which produces many paradigmatically quantum phenomena. We give a brief presentation of the framework, and then demonstrate how it naturally yields Bell inequality violations. We then study the argument due to Einstein, Podolsky, and Rosen, and show how the counterfactual inference needed to conclude the incompleteness of the quantum formalism is barred by the epistemic horizon. Similarly, the paradoxes due to Hardy and Frauchiger-Renner are discussed, and found to turn on an inconsistent combination of information from incompatible contexts.