论文标题
在现场理论中通过阶段减少拉格朗日
Lagrangian Reduction by Stages in Field Theory
论文作者
论文摘要
我们提出了一类捆绑包,以便通过协变田理论进行拉格朗日降低。该类别在拉格朗日(Lagrangian)减少的拉格朗日(Lagrange-Poincaré)捆绑中扮演着类似的角色,包括机械师的阶段,包括喷气捆绑包和减少的协方差构型配置空间。此外,我们分析了所得的重建条件,并在这种情况下制定了Noether定理。最后,带有转子的分子链模型被视为该理论框架的应用。
We propose a category of bundles in order to perform Lagrangian reduction by stages in covariant Field Theory. This category plays an analogous role to Lagrange-Poincaré bundles in Lagrangian reduction by stages in Mechanics and includes both jet bundles and reduced covariant configuration spaces. Furthermore, we analyze the resulting reconstruction condition and formulate the Noether theorem in this context. Finally, a model of a molecular strand with rotors is seen as an application of this theoretical frame.