论文标题
麦克斯韦和半简单的仪表理论扩展(反)de Sitter代数
Gauge theory of the Maxwell and semi-simple extended (anti) de Sitter algebra
论文作者
论文摘要
在本文中,构建了(反)de Sitter代数的半简单和麦克斯韦延伸。然后,通过测量(反)de Sitter代数的麦克斯韦半简单延伸来提出量规不变的模型。首先,我们为五维时空构建了类似于模型的模型动作,其中已经考虑了自发对称性破裂的影响。在此过程中,我们获得了爱因斯坦字段方程的扩展版。接下来,我们分解了五维扩展的谎言代数,并建立了一个包含爱因斯坦 - 希尔伯特(Einstein-Hilbert)术语的MacDowell-Mansouri类似的动作,宇宙学术语以及来自麦克斯韦(Maxwell)延伸的新术语,该术语来自四维时空,假定无扭转状态。最后,我们已经表明,对于适当选择的规格条件,这两个模型都是等效的。
In this paper, a semi-simple and Maxwell extension of the (anti) de Sitter algebra is constructed. Then, a gauge-invariant model has been presented by gauging the Maxwell semi-simple extension of the (anti) de Sitter algebra. We firstly construct a Stelle-West like model action for five-dimensional space-time in which the effects of spontaneous symmetry breaking have been taken into account. In doing so, we get an extended version of Einstein's field equations. Next, we decompose the five-dimensional extended Lie algebra and establish a MacDowell-Mansouri like action that contains the Einstein-Hilbert term, the cosmological term as well as new terms coming from Maxwell extension in four-dimensional space-time where the torsion-free condition is assumed. Finally, we have shown that both models are equivalent for an appropriately chosen gauge condition.