论文标题

在新颖的环境中学习可转移的推动操纵技巧

Learning Transferable Push Manipulation Skills in Novel Contexts

论文作者

Howard, Rhys, Zito, Claudio

论文摘要

本文关注的是学习可转移的远期模型,用于推动操纵,该模型可以应用于新颖的环境以及如何在可用的关键信息时提高预测质量。我们建议学习一个用于推动相互作用的参数内部模型,该模型类似于人类,即使在新颖的环境中,也能够预测物理相互作用的结果。鉴于所需的推动作用,人类能够确定将手指放在新物体上的位置,从而产生对象的可预测运动。我们通过将学习分为两个部分来实现相同的行为。首先,我们学习一组本地联系模型,以表示机器人推动器,对象和环境之间的几何关系。然后,我们学习一组参数的本地运动模型,以预测这些接触在整个推动过程中的变化。一组接触和运动模型代表我们的内部模型。通过在物理参数上调整分布的形状,我们可以修改内部模型的响应。当没有有关新颖环境的信息(即无偏见的预测指标)时,均匀的分布会产生粗糙估计。对于特定的环境/对象对(例如低摩擦/高质量),即有偏见的预测指标,可以学习更准确的预测变量。在模拟环境中显示了我们方法的有效性,在该环境中,先锋3-DX机器人需要预测新物体的推动结果,我们在真实的机器人上提供了概念证明。我们在2个对象(一个立方体和一个圆柱体)上训练总共24,000个,并在6个对象上测试包括各种形状,尺寸和物理参数的对象,总共有14400个预测的推杆。我们的结果表明,偏见和无偏的预测因子都可以根据精心调整的物理模拟器的结果可靠地产生预测。

This paper is concerned with learning transferable forward models for push manipulation that can be applying to novel contexts and how to improve the quality of prediction when critical information is available. We propose to learn a parametric internal model for push interactions that, similar for humans, enables a robot to predict the outcome of a physical interaction even in novel contexts. Given a desired push action, humans are capable to identify where to place their finger on a new object so to produce a predictable motion of the object. We achieve the same behaviour by factorising the learning into two parts. First, we learn a set of local contact models to represent the geometrical relations between the robot pusher, the object, and the environment. Then we learn a set of parametric local motion models to predict how these contacts change throughout a push. The set of contact and motion models represent our internal model. By adjusting the shapes of the distributions over the physical parameters, we modify the internal model's response. Uniform distributions yield to coarse estimates when no information is available about the novel context (i.e. unbiased predictor). A more accurate predictor can be learned for a specific environment/object pair (e.g. low friction/high mass), i.e. biased predictor. The effectiveness of our approach is shown in a simulated environment in which a Pioneer 3-DX robot needs to predict a push outcome for a novel object, and we provide a proof of concept on a real robot. We train on 2 objects (a cube and a cylinder) for a total of 24,000 pushes in various conditions, and test on 6 objects encompassing a variety of shapes, sizes, and physical parameters for a total of 14,400 predicted push outcomes. Our results show that both biased and unbiased predictors can reliably produce predictions in line with the outcomes of a carefully tuned physics simulator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源