论文标题
在三个时期耦合的谐波振荡器中的纠缠和连贯性的动力和重新分布
Dynamics and Redistribution of Entanglement and Coherence in Three Time-Dependent Coupled Harmonic Oscillators
论文作者
论文摘要
我们研究了三个时间依赖性耦合的谐波振荡器中纠缠和连贯性的动力学和重新分布。我们通过使用时间依赖性的Euler旋转以及线性淬灭模型来获得真空溶液的状态来解决Schrödinger方程。可以将这种状态转换为相空间图片以确定Wigner分布。我们证明其高斯矩阵$ \ mathbb {g}(t)$可用于直接施放协方差矩阵$σ(t)$。为了量化状态的混合性和纠缠,分别在三种情况下使用线性和von Neumann熵:完全对称,双对称和完全非对称。然后,我们确定连贯性,三方纠缠和局部不确定性,并得出它们的动态。我们表明,所有量子信息数量的动力学都是由Ermakov模式驱动的。最后,我们使用同基检测来重新分配纠缠和连贯性的资源。
We study the dynamics and redistribution of entanglement and coherence in three time-dependent coupled harmonic oscillators. We resolve the Schrödinger equation by using time-dependent Euler rotation together with a linear quench model to obtain the state of vacuum solution. Such state can be translated to the phase space picture to determine the Wigner distribution. We show that its Gaussian matrix $\mathbb{G}(t)$ can be used to directly cast the covariance matrix $σ(t)$. To quantify the mixedness and entanglement of the state one uses respectively linear and von Neumann entropies for three cases: fully symmetric, bi-symmetric and fully non symmetric. Then we determine the coherence, tripartite entanglement and local uncertainties and derive their dynamics. We show that the dynamics of all quantum information quantities are driven by the Ermakov modes. Finally, we use an homodyne detection to redistribute both resources of entanglement and coherence.