论文标题

基于范德华触点的Inse Schottky二极管

InSe Schottky diodes based on van der Waals contacts

论文作者

Zhao, Qinghua, Jie, Wanqi, Wang, Tao, Castellanos-Gomez, Andres, Frisenda, Riccardo

论文摘要

二维半导体是下一代电子产品和光电三位型的出色候选者。为了制造具有最佳电气性能的设备,在金属 - 触发器界面上具有高质量的半导体晶体和理想的连接至关重要。得益于范德华晶体的机械去角质,在实验室中很容易获得原子上较薄的高质量单晶。但是,常规的金属沉积技术可以引入化学障碍和金属诱导的中间隙状态,从而诱导费米水平固定并可以降低金属 - 触发器界面,从而导致性能较差的设备。在本文中,我们探讨了Au-Inse和石墨I-Inse van der waals接触的电接触特性,该触点是通过机械剥落的Inse薄片堆叠到预先模拟的AU或石墨电极上而无需光刻或金属沉积而获得的。通过范德华接触获得的金属 - 气门界面的高质量可以根据AU-INSE Schottky屏障来制造高质量的Schottky Di-odes。我们的实验观察表明,由于INSE和石墨的类似电子亲和力,石墨界面处的接触屏障可以忽略不计,而Au-Inse接口则由大型Schottky屏障主导。

Two-dimensional semiconductors are excellent candidates for next-generation electronics and optoelec-tronics thanks to their electrical properties and strong light-matter interaction. To fabricate devices with optimal electrical properties, it is crucial to have both high-quality semiconducting crystals and ideal con-tacts at metal-semiconductor interfaces. Thanks to the mechanical exfoliation of van der Waals crystals, atomically-thin high-quality single-crystals can easily be obtained in a laboratory. However, conventional metal deposition techniques can introduce chemical disorder and metal-induced mid-gap states that induce Fermi level pinning and can degrade the metal-semiconductor interfaces, resulting in poorly performing devices. In this article, we explore the electrical contact characteristics of Au-InSe and graphite-InSe van der Waals contacts, obtained by stacking mechanically exfoliated InSe flakes onto pre-patterned Au or graphite electrodes without the need of lithography or metal deposition. The high quality of the metal-semiconductor interfaces obtained by van der Waals contact allows to fabricate high-quality Schottky di-odes based on the Au-InSe Schottky barrier. Our experimental observation indicates that the contact barrier at the graphite-InSe interface is negligible due to the similar electron affinity of InSe and graphite, while the Au-InSe interfaces are dominated by a large Schottky barrier.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源