论文标题
在结构化预测中学习输出嵌入
Learning Output Embeddings in Structured Prediction
论文作者
论文摘要
一种强大而灵活的结构化预测方法包括将结构化对象嵌入,该对象可以通过输出内核来预测可能是无限维度的特征空间,然后解决该输出空间中的回归问题。原始空间中的预测是通过解决前图像问题来计算的。在这种方法中,与目标损失相关的嵌入是在学习阶段之前定义的。在这项工作中,我们建议共同了解输出嵌入的有限近似以及回归函数到新功能空间中。为此,我们利用有关输出的先验信息以及未探索的无监督输出数据,这些数据通常在结构化的预测问题中可用。我们证明,所得的结构化预测变量是一致的估计器,并获得了多余的风险结合。此外,新型结构化预测工具的计算复杂性要比以前的输出内核方法明显小。对各种结构化预测问题进行了经验测试的方法表明,通用性并能够处理大型数据集。
A powerful and flexible approach to structured prediction consists in embedding the structured objects to be predicted into a feature space of possibly infinite dimension by means of output kernels, and then, solving a regression problem in this output space. A prediction in the original space is computed by solving a pre-image problem. In such an approach, the embedding, linked to the target loss, is defined prior to the learning phase. In this work, we propose to jointly learn a finite approximation of the output embedding and the regression function into the new feature space. For that purpose, we leverage a priori information on the outputs and also unexploited unsupervised output data, which are both often available in structured prediction problems. We prove that the resulting structured predictor is a consistent estimator, and derive an excess risk bound. Moreover, the novel structured prediction tool enjoys a significantly smaller computational complexity than former output kernel methods. The approach empirically tested on various structured prediction problems reveals to be versatile and able to handle large datasets.