论文标题

Whitehead在O最低结构中可以定义的光滑函数环

Whitehead group of the ring of smooth functions definable in an o-minimal structure

论文作者

Fujita, Masato

论文摘要

The Whitney group $K_1(A)$ is isomorphic to $A^\times \times \operatorname{SK}_1(A)$ for some subgroup $\operatorname{SK}_1(A)$, where $A$ is a commutative ring and $A^\times$ denotes the set of units in $A$.考虑一个真实闭合字段$ \ Mathcal r =(r,0,1,+,\ cdot,\ ldots)$的O-Minimal扩展。令$ m $为仿射定义的$ c^r $歧管,其中$ r $是一个非负整数。我们演示了其同质定理,并且组$ \ operatorName {sk} _1(c _ {c _ {\ text {df}}^r)$是与$ \ operatotorname {sk}} _1(c _ {c _ {c _ {\ text {df}}}^0(M)$, $ c _ {\ text {df}}^r(m)$表示$ m $上的可定义$ c^r $ functions的戒指。

The Whitney group $K_1(A)$ is isomorphic to $A^\times \times \operatorname{SK}_1(A)$ for some subgroup $\operatorname{SK}_1(A)$, where $A$ is a commutative ring and $A^\times$ denotes the set of units in $A$. Consider an o-minimal expansion of a real closed field $\mathcal R=(R,0,1,+,\cdot,\ldots)$. Let $M$ be an affine definable $C^r$ manifold, where $r$ is a nonnegative integer. We demonstrate its homotopy theorem and that the group $\operatorname{SK}_1(C_{\text{df}}^r)$ is isomorphic to $\operatorname{SK}_1(C_{\text{df}}^0(M))$, where $C_{\text{df}}^r(M)$ denotes the ring of definable $C^r$ functions on $M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源