论文标题

整个功能的注释,共享与差异方程式应用程序的有限集

A note on entire functions sharing a finite set with applications to difference equations

论文作者

Ahamed, Molla Basir

论文摘要

本文研究了整个功能的差异操作员的价值分布和唯一性问题。这项研究表明,有限的订购了整个函数$ f $当共享两个全部功能的$ \ mathcal {s} = \ {α(z),β(z)\} $的两个整个函数$α$和$β$和$β$和$ \ max \ max \ {ρ(α),ρ(β)\ρ(β) \ Mathcal {l}^n_c(f)= \ sum_ {j = 0}^{n} a_jf(z+jc)$,然后$ \ mathcal {l}^n_c(f)\ equiv f $,更重要的是,已经找到了某些函数$ f $的某些形式。本文的结果改善了\ emph {k的结果。 liu},\ emph {x。 M. li},\ emph {j。 Qi,Y。Wang和Y. Gu}等。已经展示了一些建设性示例,以显示条件$ \ max \ {ρ(α),ρ(β)\} <ρ(f)$在我们的主要结果中很敏锐。还展示了示例,以表明,如果$ cm $共享被$ im $共享取代,那么主要结果的结论就停止了。

Value distribution and uniqueness problems of difference operator of an entire function have been investigated in this article. This research shows that a finite ordered entire function $ f $ when sharing a set $ \mathcal{S}=\{α(z), β(z)\} $ of two entire functions $ α$ and $ β$ with $ \max\{ρ(α), ρ(β)\}<ρ(f) $ with its difference $ \mathcal{L}^n_c(f)=\sum_{j=0}^{n}a_jf(z+jc) $, then $ \mathcal{L}^n_c(f)\equiv f $, and more importantly certain form of the function $ f $ has been found. The results in this paper improve those given by \emph{k. Liu}, \emph{X. M. Li}, \emph{J. Qi, Y. Wang and Y. Gu} etc. Some constructive examples have been exhibited to show the condition $ \max\{ρ(α), ρ(β)\}<ρ(f) $ is sharp in our main result. Examples have been also exhibited to show that if $ CM $ sharing is replaced by $ IM $ sharing, then conclusion of the main results ceases to hold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源