论文标题

用于生成和分析驾驶场景轨迹的深度学习框架

A Deep Learning Framework for Generation and Analysis of Driving Scenario Trajectories

论文作者

Demetriou, Andreas, Alfsvåg, Henrik, Rahrovani, Sadegh, Chehreghani, Morteza Haghir

论文摘要

我们提出了一个统一的深度学习框架,以生成和分析驾驶场景轨迹,并以原则性的方式验证其有效性。为了建模和生成不同长度不同的轨迹方案,我们开发了两种方法。首先,我们通过调节轨迹的长度来调整复发性条件生成对抗网络(RC-GAN)。这为我们提供了生成可变长度驾驶轨迹的灵活性,这是对自主驾驶验证的场景测试案例生成的理想功能。其次,我们开发了一个基于带有gans的复发自动编码器的体系结构,以消除可变长度问题,其中我们训练gan学习/生成原始轨迹的潜在表示。在这种方法中,我们训练一个集成的前馈神经网络,以估计轨迹的长度,以便能够将它们从潜在的空间表示中带回。除了轨迹生成外,我们还采用训练有素的自动编码器作为特征提取器,以进行聚类和异常检测,以进一步了解收集的方案数据集。我们在实验中研究了提出的框架在实际情况下从现场数据收集获得的现实情况轨迹上的性能。

We propose a unified deep learning framework for the generation and analysis of driving scenario trajectories, and validate its effectiveness in a principled way. To model and generate scenarios of trajectories with different lengths, we develop two approaches. First, we adapt the Recurrent Conditional Generative Adversarial Networks (RC-GAN) by conditioning on the length of the trajectories. This provides us the flexibility to generate variable-length driving trajectories, a desirable feature for scenario test case generation in the verification of autonomous driving. Second, we develop an architecture based on Recurrent Autoencoder with GANs to obviate the variable length issue, wherein we train a GAN to learn/generate the latent representations of original trajectories. In this approach, we train an integrated feed-forward neural network to estimate the length of the trajectories to be able to bring them back from the latent space representation. In addition to trajectory generation, we employ the trained autoencoder as a feature extractor, for the purpose of clustering and anomaly detection, to obtain further insights into the collected scenario dataset. We experimentally investigate the performance of the proposed framework on real-world scenario trajectories obtained from in-field data collection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源