论文标题

系外系统的体系结构。 III:AMD稳定行星系统的偏心和相互倾斜度分布

Architectures of Exoplanetary Systems. III: Eccentricity and Mutual Inclination Distributions of AMD-stable Planetary Systems

论文作者

He, Matthias Y., Ford, Eric B., Ragozzine, Darin, Carrera, Daniel

论文摘要

行星系统的角动量赤字(AMD)是其轨道激发和长期稳定性的预测指标的量度。我们采用AMD稳定性标准来限制外部系统系统的轨道体系结构。以前,He,Ford和&Ragozzine(2019)(Arxiv:1907.07773v2)通过正向建模(SYSSIM)表明,观察到的多重分布可以由两个由低和高共同倾斜成分组成的种群很好地复制。在这里,我们表明,在AMD稳定性极限下由系统产生的相互倾向的广泛分布也可以与观察到的开普勒人群相匹配。我们表明,将行星系统的最大AMD分布在其行星之间会导致偏心率和相互倾斜的多种性依赖性分布。具有内在行星更多行星的系统中位数的偏心率和相互倾向较低,并且这种趋势由内在行星多样性($ n $)的幂律函数很好地描述:$ \tildeμ_{ n^{ - 1.73 _ { - 0.08}^{+0.09}} $,其中$ \tildeμ__{e,n} $和$ \tildeμ__{i,n} $是偏心和倾斜度分布的中位数。我们还发现,本固有的单个行星比多层次系统具有更高的偏心率($σ_{e,1} \ sim 0.25 $),并且具有多样化的趋势出现在观察到的周期范围差异传输持续时间比例的分布中。我们表明,观察到的行星大小顺序和均匀间距的偏好比仅开普勒任务的检测偏见所能产生的偏好更为极端。最后,我们发现,对于在5到10天之间检测到的传输行星的系统,还有另一个行星具有更大的径向速度信号$ \ simeq〜53 \%$。

The angular momentum deficit (AMD) of a planetary system is a measure of its orbital excitation and a predictor of long-term stability. We adopt the AMD-stability criteria to constrain the orbital architectures for exoplanetary systems. Previously, He, Ford, & Ragozzine (2019) (arXiv:1907.07773v2) showed through forward modelling (SysSim) that the observed multiplicity distribution can be well reproduced by two populations consisting of a low and a high mutual inclination component. Here, we show that a broad distribution of mutual inclinations arising from systems at the AMD-stability limit can also match the observed Kepler population. We show that distributing a planetary system's maximum AMD amongst its planets results in a multiplicity-dependent distribution of eccentricities and mutual inclinations. Systems with intrinsically more planets have lower median eccentricities and mutual inclinations, and this trend is well described by power-law functions of the intrinsic planet multiplicity ($n$): $\tildeμ_{e,n} \propto n^{-1.74_{-0.07}^{+0.11}}$ and $\tildeμ_{i,n} \propto n^{-1.73_{-0.08}^{+0.09}}$, where $\tildeμ_{e,n}$ and $\tildeμ_{i,n}$ are the medians of the eccentricity and inclination distributions. We also find that intrinsic single planets have higher eccentricities ($σ_{e,1} \sim 0.25$) than multi-planet systems, and that the trends with multiplicity appear in the observed distributions of period-normalized transit duration ratios. We show that the observed preferences for planet size orderings and uniform spacings are more extreme than what can be produced by the detection biases of the Kepler mission alone. Finally, we find that for systems with detected transiting planets between 5 and 10 days, there is another planet with a greater radial velocity signal $\simeq~53\%$ of the time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源