论文标题
关于身份的TSETLIN机器的收敛性,而不是运算符
On the Convergence of Tsetlin Machines for the IDENTITY- and NOT Operators
论文作者
论文摘要
Tsetlin Machine(TM)是一种最近的机器学习算法,具有多种不同的属性,例如可解释性,简单性和硬件友好性。尽管大量的经验评估报告了其绩效,但其收敛的数学分析仍然开放。在本文中,我们分析了TM的收敛性,仅涉及一个用于分类的子句。更具体地说,我们检查了两个基本的逻辑运算符,即“身份”和“不是”运算符。我们的分析表明,只有一个子句可以正确收敛到预期的逻辑操作员,从无限的时间范围内从训练数据中学习。此外,它可以通过配置粒度参数来捕获任意稀有的模式,并在两个候选模式不兼容时选择最准确的模式。对两个基本操作员的收敛性分析为分析其他逻辑运算符的基础奠定了基础。从数学角度来看,这些分析完全就TMS在几种模式识别问题上获得最新性能提供了新的见解。
The Tsetlin Machine (TM) is a recent machine learning algorithm with several distinct properties, such as interpretability, simplicity, and hardware-friendliness. Although numerous empirical evaluations report on its performance, the mathematical analysis of its convergence is still open. In this article, we analyze the convergence of the TM with only one clause involved for classification. More specifically, we examine two basic logical operators, namely, the "IDENTITY"- and "NOT" operators. Our analysis reveals that the TM, with just one clause, can converge correctly to the intended logical operator, learning from training data over an infinite time horizon. Besides, it can capture arbitrarily rare patterns and select the most accurate one when two candidate patterns are incompatible, by configuring a granularity parameter. The analysis of the convergence of the two basic operators lays the foundation for analyzing other logical operators. These analyses altogether, from a mathematical perspective, provide new insights on why TMs have obtained state-of-the-art performance on several pattern recognition problems.