论文标题
归纳可达性证人
Inductive Reachability Witnesses
论文作者
论文摘要
在这项工作中,我们考虑了可及性分析的基本问题,而不是具有实际变量的命令性计划。可及性属性要求程序在执行过程中可以到达某些目标状态。以前的处理可及性分析的工作要么无法处理由通用循环(例如符号执行)组成的程序,要么无法处理缺乏完整性保证(例如抽象解释),或者不是自动化的(例如,错误的逻辑/反向HOARE逻辑)。相比之下,我们提出了一种可以处理一般程序的新颖方法,可以(半)完整,并且可以完全自动化一系列计划。我们的方法通过(通用)诱导性可达性证人(IRWS/UIRWS)的概念将技术从不变产生和排名 - 功能综合综合的技术扩展到可达性分析。尽管传统的不变生成使用了可触及状态的过度评价,但我们认为自然的双重问题是不足以使可以达到目标状态的计划状态相应。然后,我们应用与排名函数类似的参数,以确保我们不足的所有状态确实可以在有限的许多步骤中达到目标设置。
In this work, we consider the fundamental problem of reachability analysis over imperative programs with real variables. The reachability property requires that a program can reach certain target states during its execution. Previous works that tackle reachability analysis are either unable to handle programs consisting of general loops (e.g. symbolic execution), or lack completeness guarantees (e.g. abstract interpretation), or are not automated (e.g. incorrectness logic/reverse Hoare logic). In contrast, we propose a novel approach for reachability analysis that can handle general programs, is (semi-)complete, and can be entirely automated for a wide family of programs. Our approach extends techniques from both invariant generation and ranking-function synthesis to reachability analysis through the notion of (Universal) Inductive Reachability Witnesses (IRWs/UIRWs). While traditional invariant generation uses over-approximations of reachable states, we consider the natural dual problem of under-approximating the set of program states that can reach a target state. We then apply an argument similar to ranking functions to ensure that all states in our under-approximation can indeed reach the target set in finitely many steps.