论文标题

双维变量的超高维变量选择

Ultra-high Dimensional Variable Selection for Doubly Robust Causal Inference

论文作者

Tang, Dingke, Kong, Dehan, Pan, Wenliang, Wang, Linbo

论文摘要

通过丰富的协变量信息,因果推论越来越依赖于观察性研究。为了构建可拖动的因果程序,例如双重稳健的估计器,必须首先从高度甚至超高维数据中提取重要特征。在本文中,我们提出了从现代超高维数据集中选择混杂因素的因果球筛选。与预测建模的可变选择的熟悉任务不同,我们的混杂选择程序旨在控制混淆,同时提高所得因果效应估计的效率。以前的经验和理论研究表明,不包括治疗的原因不是混杂因素。在这些结果的驱动下,我们的目标是在倾向得分和结果回归模型中保持所有结果的所有预测指标。提案的一个独特特征是,我们使用无结果模型的程序进行倾向分数模型选择,从而在产生的因果效应估计器中保持双重鲁棒性。我们的理论分析表明,所提出的程序具有许多属性,包括模型选择一致性和明智的正态性。合成和实际数据分析表明,我们的建议在一系列现实的设置中使用现有方法表现出色。制备本文的数据是从阿尔茨海默氏病神经影像倡议(ADNI)数据库中获得的。

Causal inference has been increasingly reliant on observational studies with rich covariate information. To build tractable causal procedures, such as the doubly robust estimators, it is imperative to first extract important features from high or even ultra-high dimensional data. In this paper, we propose causal ball screening for confounder selection from modern ultra-high dimensional data sets. Unlike the familiar task of variable selection for prediction modeling, our confounder selection procedure aims to control for confounding while improving efficiency in the resulting causal effect estimate. Previous empirical and theoretical studies suggest excluding causes of the treatment that are not confounders. Motivated by these results, our goal is to keep all the predictors of the outcome in both the propensity score and outcome regression models. A distinctive feature of our proposal is that we use an outcome model-free procedure for propensity score model selection, thereby maintaining double robustness in the resulting causal effect estimator. Our theoretical analyses show that the proposed procedure enjoys a number of properties, including model selection consistency and point-wise normality. Synthetic and real data analysis show that our proposal performs favorably with existing methods in a range of realistic settings. Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源