论文标题

纳米结构中非谐音声子散射的量子机械建模

Quantum mechanical modeling of anharmonic phonon-phonon scattering in nanostructures

论文作者

Guo, Yangyu, Bescond, Marc, Zhang, Zhongwei, Luisier, Mathieu, Nomura, Masahiro, Volz, Sebastian

论文摘要

在半导体纳米电子学的热量耗散瓶颈中,相干量子效应变得越来越重要,如今的特征大小缩小到很少的纳米米尺度。然而,对于极小的纳米结构中,量子机械模型仍然难以捉摸,而翻译对称性则是断裂的。正确模拟量子热传输是一项长期挑战的任务,包括与实际应用相关的规模上的非谐波散射。在本文中,我们通过示意扰动的扩展以及对谐波和anharmonic项的傅立叶扰动的扩展以及引入傅立叶表示,对1D和3D纳米结构的非平衡性绿色函数(NEGF)形式上介绍了澄清的理论表述。开发了具有第一原则力常数输入的平行计算框架,用于大规模量子热传输模拟。研究了数值实施中的一些关键近似值,以确保数值准确性和效率之间的平衡。通过建模通过硅薄膜建模跨平面热传输,为Anharmonic Phonon NegF形式主义和计算框架展示了定量验证。声子 - 声子散射表明是可观的,即使在10 nm左右的膜厚度中,在室温下的导热率降低约为20%。目前的方法为设备量子热建模提供了一个强大的平台,以及从纳米 - 音出晶体中从相干到不连贯热传输的过渡的研究。因此,这项工作铺平了通过声子的波性质理解和操纵热传导的方式。

The coherent quantum effect becomes increasingly important in the heat dissipation bottleneck of semiconductor nanoelectronics with the characteristic size shrinking down to few nano-meters scale nowadays. However, the quantum mechanical model remains elusive for anharmonic phonon-phonon scattering in extremely small nanostructures with broken translational symmetry. It is a long-term challenging task to correctly simulate quantum heat transport including anharmonic scattering at a scale relevant to practical applications. In this article, we present a clarified theoretical formulation of anharmonic phonon non-equilibrium Green function (NEGF) formalism for both 1D and 3D nanostructures, through a diagrammatic perturbation expansion and an introduction of Fourier representation to both harmonic and anharmonic terms. A parallelized computational framework with first-principle force constants input is developed for large-scale quantum heat transport simulation. Some crucial approximations in numerical implementation are investigated to ensure the balance between numerical accuracy and efficiency. A quantitative validation is demonstrated for the anharmonic phonon NEGF formalism and computational framework by modeling cross-plane heat transport through silicon thin film. The phonon-phonon scattering is shown to be appreciable and to introduce about 20% reduction of thermal conductivity at room temperature even for a film thickness around 10 nm. The present methodology provides a robust platform for the device quantum thermal modeling, as well as the study on the transition from coherent to incoherent heat transport in nano-phononic crystals. This work thus paves the way to understand and to manipulate heat conduction via the wave nature of phonons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源